1,143 research outputs found

    Electronic structure of multiquantum giant vortex states in mesoscopic superconducting disks

    Full text link
    We report self-consistent calculations of the microscopic electronic structure of the so-called giant vortex states. These novel multiquantum vortex states, detected by recent magnetization measurements on submicron disks, are qualitatively different from the Abrikosov vortices in the bulk. We find that, in addition to multiple branches of bound states in the core region, the local tunneling density of states exhibits Tomasch oscillations due to the single-particle interference arising from quantum confinement. These features should be directly observable by scanning tunneling spectroscopy.Comment: 5 pages, 4 figure

    Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    Full text link
    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including the first fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc

    Quasiparticle States at a d-Wave Vortex Core in High-Tc Superconductors: Induction of Local Spin Density Wave Order

    Full text link
    The local density of states (LDOS) at one of the vortex lattice cores in a high Tc superconductor is studied by using a self-consistent mean field theory including interactions for both antiferromagnetism (AF) and d-wave superconductivity (DSC). The parameters are chosen in such a way that in an optimally doped sample the AF order is completely suppressed while DSC prevails. In the mixed state, we show that the local AF-like SDW order appears near the vortex core and acts as an effective local magnetic field on the quasiparticles. As a result, the LDOS at the core exhibits a double-peak structure near the Fermi level that is in good agreement with the STM observations on YBCO and BSCCO. The presence of local AF order near the votex core is also consistent with the recent neutron scattering experiment on LSCO.Comment: 4 pages, 2 ps figure

    A Self-Consistent Microscopic Theory of Surface Superconductivity

    Full text link
    The electronic structure of the superconducting surface sheath in a type-II superconductor in magnetic fields Hc2<H<Hc3H_{c2}<H<H_{c3} is calculated self-consistently using the Bogoliubov-de Gennes equations. We find that the pair potential Δ(x)\Delta(x) exhibits pronounced Friedel oscillations near the surface, in marked contrast with the results of Ginzburg-Landau theory. The role of magnetic edge states is emphasized. The local density of states near the surface shows a significant depletion near the Fermi energy due to the development of local superconducting order. We suggest that this structure could be unveiled by scanning-tunneling microscopy studies performed near the edge of a superconducting sample.Comment: 12 pages, Revtex 3.0, 3 postscript figures appende

    Ab initio Molecular Dynamics in Adaptive Coordinates

    Full text link
    We present a new formulation of ab initio molecular dynamics which exploits the efficiency of plane waves in adaptive curvilinear coordinates, and thus provides an accurate treatment of first-row elements. The method is used to perform a molecular dynamics simulation of the CO_2 molecule, and allows to reproduce detailed features of its vibrational spectrum such as the splitting of the Raman sigma+_g mode caused by Fermi resonance. This new approach opens the way to highly accurate ab initio simulations of organic compounds.Comment: 11 pages, 3 PostScript figure

    Local density of states in the vortex lattice in a type II superconductor

    Full text link
    Local density of states (LDOS) in the triangular vortex lattice is investigated based on the quasi-classical Eilenberger theory. We consider the case of an isotropic s-wave superconductor with the material parameter appropriate to NbSe_2. At a weak magnetic field, the spatial variation of the LDOS shows cylindrical structure around a vortex core. On the other hand, at a high field where the core regions substantially overlap each other, the LDOS is sixfold star-shaped structure due to the vortex lattice effect. The orientation of the star coincides with the experimental data of the scanning tunneling microscopy. That is, the ray of the star extends toward the nearest-neighbor (next nearest-neighbor) vortex direction at higher (lower) energy.Comment: 10 pages, RevTex, 32 figure

    Dirac quasiparticles in the mixed state

    Full text link
    Energies and wave functions are calculated for d-wave quasiparticles in the mixed state using the formalism of Franz and Tesanovic for the low-lying energy levels. The accuracy of the plane-wave expansion is explored by comparing approximate to exact results for a simplified one-dimensional problem, and the convergence of the plane- wave expansion to the two-dimensional case is studied. The results are used to calculate the low-energy tunneling density of states and the low-temperature specific heat, and these theoretical results are compared to semiclassical treatments and to the available data. Implications for the muon spin resonance measurements of vortex core size are also discussed.Comment: 13 pages, 15 figures, RevTeX. References corrected. A factor of 2 in the results has been corrected, and the conclusions have been update

    The Current Carried by Bound States of a Superconducting Vortex

    Full text link
    We investigate the spectrum of quasiparticle excitations in the core of isolated pancake vortices in clean layered superconductors. Analysis of the spectral current density shows that both the circular current around the vortex center as well as any transport current through the vortex core is carried by localized states bound to the core by Andreev scattering. Hence the physical properties of the core are governed in clean high-κ\kappa superconductors (e.g. the cuprate superconductors) by the Andreev bound states, and not by normal electrons as it is the case for traditional (dirty) high-κ\kappa superconductors.Comment: 17 pages in a RevTex (3.0) file plus 5 Figures in PostScript. Submitted to Physical Review

    The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis

    Get PDF
    Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, “hyper-pluripotent” state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency

    Electronic states around a vortex core in high-Tc superconductors based on the t-J model

    Full text link
    Electronic states around vortex cores in high-Tc superconductors are studied using the two-dimensional t-J model in order to treat the d-wave superconductivity with short coherence length and the antiferromagnetic (AF) instability within the same framework. We focus on the disappearance of the large zero-energy peak in the local density of states observed in high-Tc superconductors. When the system is near the optimum doping, we find that the local AF correlation develops inside the vortex cores. However, the detailed doping dependence calculations confirm that the experimentally observed reduction of the zero-energy peak is more reasonably attributed to the smallness of the core size rather than to the AF correlation developed inside the core. The correlation between the spatial dependence of the core states and the core radius is discussed.Comment: 4 pages, 4 figure
    corecore