21 research outputs found

    Integrated Process to Obtain Anthocyanin Enriched Palm-Fat Particles from Elderberry Juice

    Get PDF
    Two novel technologies were applied in order to investigate concentration and formulation of anthocyanins for potential use in food industry. Integrated membrane process technology was applied for concentrating elderberry juice. In the first step, the juice was clarified by microfiltration, followed by a pre-concentration step with reverse osmosis. Finally, the juice was concentrated to the end concentration of 56 °Brix by osmotic distillation. The elderberry juice concentrate was formulated in a powderous form by a high-pressure process — Particles from Gas Saturated Solution (PGSS™) — using supercritical CO2. The applied carrier material was palm fat. The products with different anthocyanin-carrier ratios were measured for their colour properties (lightness, hue angle, and saturation). Colour stability was monitored for prolonged storage at different conditions (light/dark and ambient temperature/ refrigerator). The obtained powderous anthocyanin-palm fat products showed good colour stability, which gives good bases for potential applications in the future

    Enrichment of pineapple aroma compounds from model solutions by sweeping-gas and vacuum-pervaporation

    Get PDF
    Our experiments were based on a model solution containing five of the main pineapple aroma components. Both sweeping-gas pervaporation and vacuum-pervaporation methods were carried out. Measurements were performed at different temperatures and feed flow rates. The purposes of this study were to examine applicability of the two pervaporation methods in reference to the pineapple aroma recovery, the effects of the operating parameters on the process, and modelling the pervaporation process by resistance-in-series model. Higher enrichment could be reached with vacuum-pervaporation than the sweeping-gas method. The separation process is determined by the diffusion of compounds in the membrane, thus the resistance in the boundary layer at liquid side is negligible. Based on performed experiments, the pervaporation process can be applied in beverage industry for aroma recovery

    Production of microemulsion by membrane emulsification: Comparison of empty ceramic tube membrane and membrane equipped with static turbulence promoters

    Get PDF
    Membrane emulsification (ME) is a relatively new technique for the highly controlled production of particulates, which helps to obtain a narrower distribution compared to other emulsification techniques such as homogenizers or ultrasound. Benefits of membrane emulsification for food applications include the low shear properties and the uniform size distribution. In this process, the dispersed phase (oil) is pressed through the pores of a microporous membrane directly into the continuous phase (water) flowing tangentially to the membrane surface. The purpose of the emulsification experimentations was to find and model operating conditions of the operation. In laboratory experiments from conventional, commercial grade sunflower oil (dispersed phase) and from distilled water (solid phase), emulsions were prepared. The ceramic tube membrane with nominal pore size of 1.4 μm was used in the experiments (ZrO2). In order to increase the shear-stress near the membrane wall (influence the characteristics of the flow regime of the continuous phase), a kind of self-fabricated helical-shaped-ribbon reducer was installed inside the tube membrane

    Preparation of apple spirit by ceramic pervaporation membrane

    Get PDF
    This study was based on the production of an alcoholic beverage from apple using laboratory pervaporation equipment. Hungarian fruit brandy is called pálinka, which can be made by pot distiller or multistage distiller made of copper. In case of traditional pot still distillation the final product is gained from two separate distillations. Pervaporation is an energy efficient membrane process for separating liquid mixtures. Application of pervaporation to separate the product of the initial distillation leads to lower energy consumption than using double-distillation process. The aim of our work was to develop an alternative technology for the production of pálinka that integrates distillation and pervaporation

    Examination of whey de-fatting by enhanced membrane filtration

    Get PDF
    The largest quantities of by-products of dairy processing originates from the cheese making. Whey proteins are used for animal feeding and human nutrition as well, for example in dry soups, infant formulas, and supplements. The fat components of the whey might impair its use. The aim of our experiments was to investigate the separation of the lipid fraction of whey. The microfiltration is said to be a gentle and energy efficient method for this task. During the measurements 0.2 μm microfiltration membranes were used and the membrane separation was enhanced by vibration, inserting static mixer and air sparging. The de-fatting efficiency, the retention of the whey components, the flux values, and the resistances in different combinations were compared in this paper

    Concentration of ‘Oblachinska’ sour cherry juice using osmotic distillation

    Get PDF
    Sour cherry is one of the most famous and characteristic Hungarian fruit what is also commonly used in food production as a colour additive. The sour cherry cultivar, ‘Oblachinska’ was shown to be a rich source of antioxidant compounds, including mainly anthocyanins. Valuable compounds in fruit juice – vitamins, polyphyenols etc. –are heat-sensitive molecules, which should be taken into account during the process of concentration to prevent degradation. Osmotic distillation seems a suitable option to product high quality sour cherry juice because this process does not require high temperature or pressure. Raw juice with approximately 15°Brix was used for the experiment and tried to concentrate up to 60° Brix where the water activity low enough to inhibit the microbiological deterioration. Before and after the process, TPC (total phenolic compounds) and FRAP (ferric reducing antioxidant power) was measured using spectrophotometric methods to determine the effect of the osmotic distillation. Our results point out that osmotic distillation is a promising method to concentrate sour cherry juice and prevent the loss of valuable compounds

    Concentration of ‘Oblachinska’ sour cherry juice using osmotic distillation

    Get PDF
    Sour cherry is one of the most famous and characteristic Hungarian fruit what is also commonly used in food production as acolour additive. The sour cherry cultivar, ‘Oblachinska’ was shown to be a rich source of antioxidant compounds, including mainlyanthocyanins. Valuable compounds in fruit juice – vitamins, polyphyenols etc. –are heat-sensitive molecules, which should be taken intoaccount during the process of concentration to prevent degradation. Osmotic distillation seems a suitable option to product high quality sourcherry juice because this process does not require high temperature or pressure. Raw juice with approximately 15°Brix was used for theexperiment and tried to concentrate up to 60° Brix where the water activity low enough to inhibit the microbiological deterioration. Beforeand after the process, TPC (total phenolic compounds) and FRAP (ferric reducing antioxidant power) was measured using spectrophotometricmethods to determine the effect of the osmotic distillation. Our results point out that osmotic distillation is a promising method to concentratesour cherry juice and prevent the loss of valuable compounds

    Biochemical activities of lactose-derived prebiotics — a review

    Get PDF
    In the dairy industry different types of prebiotics, such galacto-oligosaccharide, lactulose, lactosucrose, tagatose, lactitol, lactobiono- and glucono-δ-lactone are synthesized through different chemical and biochemical reactions (hydrolysis, transgalactosylation, isomerization, fructosyl-transfer, reduction, and oxidation) as well as microbial fermentation processes using raw whey or isolated lactose as feedstock. Lactose-derived prebiotics have several functional and nutritional values. The biochemical activities of lactose-based prebiotics are expressed in the presence of probiotics (lactic acid bacteria, yeasts, Bacillus spp.). Galacto-oligosaccharide and lactosucrose reduce the risk of bowel disorder (diarrhea), inflammatory bowel disease (ulcerative colitis and crohn’s disease), and colon cancer. Galacto-oligosaccharide helps colonic absorption of minerals (iron, magnesium and calcium) and prevents osteoporosis. Lactulose, galacto-oligosaccharide, and lactitol promote laxative activity. Furthermore, lactulose may decrease the risk of hepatic encephalopathy. Prebiotics have low calorific value and glycemic index. Galacto-oligosaccharide and tagatose reduce the risks of hyperglycemia (Type 2 diabetes) and low density lipid (lipoprotein) accumulation in blood stream. Moreover, prebiotics improve immunomodulation, which reduces the risk of respiratory infection and allergies. This review describes unique biochemical mechanisms of several types of lactose-derived prebiotics

    Concentration of apricot juice using complex membrane technology

    Get PDF
    In this study, pressed apricot (Prunus armeniaca L.) juice was concentrated using complex membrane technology with different module combinations: UF-RO-OD, UF-RO-MD, UF-NF-OD and UF-NF-MD. In case of the best combination a cross-flow polyethylene ultrafiltration membrane (UF) was applied for clarification, after which preconcentration was done using reverse osmosis (RO) with a polyamide membrane, and the final concentration was completed by osmotic distillation (OD) using a polypropylene module. The UF-RO-OD procedure resulted in a final concentrate with a 65-70 °Brix dry solid content and an excellent quality juice with high polyphenol content and high antioxidant capacity.Nanofiltration (NF) and membrane distillation (MD) were not proper economic solutions.The influence of certain operation parameters was examined experimentally. Temperatures of UF and RO were: 25, 30, and 35 °C, and of OD 25 °C. Recycle flow rates were: UF: 1, 1.5, and 2 m3 h−1; RO: 200, 400, and 600 l h−1; OD: 20, 30 and 40 l h−1. The flow rates in the module were expressed by the Reynolds number, as well. Based on preliminary experiments, the transmembrane pressures of UF and RO filtration were 4 bar and 50 bar, respectively. Each experimental run was performed three times. The following optimal operation parameters provided the lowest total cost: UF: 35 °C, 2 m3 h−1, 4 bar; RO: 35 °C, 600 l h−1, 50 bar; OD: 20, 30 and 40 l h−1; temperature 25 °C.In addition, experiments were performed for apricot juice concentration by evaporation, which technique is widely applied in the industry using vacuum and low temperature.For description the UF filtration, a dynamic model and regression by SPSS 14.0 statistics software were applied
    corecore