11 research outputs found

    Targeting Leader Cells in Ovarian Cancer as an Effective Therapeutic Option

    Get PDF
    Majority of ovarian cancers are diagnosed at advanced stages with intra-peritoneal spread as the most common mode of disease metastasis. The formation of cancer spheroids is essential for the collective migration process, where shed tumour cells from the primary tumour form aggregates rather than disseminating as individual cells and seed within the peritoneal cavity. These cancer spheroids consist of leader cells (LC) and follower cells (FC), with the LC subset as key drivers of cellular movement and invasion. LCs have stem cell-like properties and are highly chemo-resistant with a specific survival addiction to several cell signalling pathways, such as the PI3K/AKT/mTOR pathway. We explore in this book chapter, the evidence supporting the role of LC in OC metastasis and the suppression of LC as an attractive therapeutic option for the treatment of advanced OC

    Glucagonoma Masquerading as a Mucinous Cancer of the Ovary: Lessons from Cell Biology

    Get PDF
    High-grade mucinous ovarian cancer (HGMOC) is often a misnomer as the majority of cases are metastatic disease with a gastro-intestinal origin. The standard platinum-based ovarian cancer (OC) chemotherapy regimens are often ineffective, and there are insufficient data to support the use of colorectal cancer (CRC) chemotherapy regimens due to the rarity of HGMOC. We described a cohort of four consecutive suspected HGMOC cases treated at the Royal Women’s Hospital, Melbourne in 2012. Two cases were treated as primary MOC, whereas the other two were considered to be metastatic CRC based on histopathological and clinical evidence. From the RNAseq analysis, we identified two cases of HGMOC whose gene expression profiles were consistent with mucinous epithelial OC, one case that was treated as metastatic CRC with gene expression profile correlated with CRC and one case with neuroendocrine (NET) gene expression features. Interestingly, glucagon was over-expressed in this tumor that was subsequently confirmed by immunohistochemistry. These findings suggest a rare glucagonoma-like NET appendiceal tumor that had metastasized to the surface of ovary and were unresponsive to CRC chemotherapy regimens. In summary, a carefully curated panel of expression markers and selected functional genomics could provide diagnosis and treatment guidance for patients with possible HGMOC

    Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma

    Get PDF
    High-grade epithelial ovarian carcinomas (OC) containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and poly(ADP-ribose) polymerase inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pre-treatment and post-progression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase 2 study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed OC. In six of 12 pre-treatment biopsies, a truncation mutation in BRCA1, RAD51C or RAD51D was identified. In five of six paired post-progression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51C. In vitro complementation assays and a patient-derived xenograft (PDX), as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations

    Epithelial-to-mesenchymal transition supports ovarian carcinosarcoma tumorigenesis and confers sensitivity to microtubule-targeting with eribulin

    Get PDF
    Ovarian carcinosarcoma (OCS) is an aggressive and rare tumour type with limited treatment options. OCS is hypothesised to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analysed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal. RNA sequencing indicated the carcinoma components were more mesenchymal when compared with pure epithelial ovarian carcinomas, supporting the conversion theory and suggesting that EMT is important in the formation of these tumours. Preclinical OCS models were used to test the efficacy of microtubule-targeting drugs, including eribulin, which has previously been shown to reverse EMT characteristics in breast cancers and induce differentiation in sarcomas. Vinorelbine and eribulin more effectively inhibited OCS growth than standard-of-care platinum-based chemotherapy, and treatment with eribulin reduced mesenchymal characteristics and N-MYC expression in OCS patient-derived xenografts (PDX). Eribulin treatment resulted in an accumulation of intracellular cholesterol in OCS cells, which triggered a down-regulation of the mevalonate pathway and prevented further cholesterol biosynthesis. Finally, eribulin increased expression of genes related to immune activation and increased the intratumoral accumulation of CD8+ T cells, supporting exploration of immunotherapy combinations in the clinic. Together, these data indicate EMT plays a key role in OCS tumourigenesis and support the conversion theory for OCS histogenesis. Targeting EMT using eribulin could help improve OCS patient outcomes

    The Molecular Origin and Taxonomy of Mucinous Ovarian Carcinoma

    Get PDF
    Mucinous ovarian carcinoma (MOC) is a unique subtype of ovarian cancer with an uncertain etiology, including whether it genuinely arises at the ovary or is metastatic disease from other organs. In addition, the molecular drivers of invasive progression, high-grade and metastatic disease are poorly defined. We perform genetic analysis of MOC across all histological grades, including benign and borderline mucinous ovarian tumors, and compare these to tumors from other potential extra-ovarian sites of origin. Here we show that MOC is distinct from tumors from other sites and supports a progressive model of evolution from borderline precursors to high-grade invasive MOC. Key drivers of progression identified are TP53 mutation and copy number aberrations, including a notable amplicon on 9p13. High copy number aberration burden is associated with worse prognosis in MOC. Our data conclusively demonstrate that MOC arise from benign and borderline precursors at the ovary and are not extra-ovarian metastases

    Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies

    No full text
    The platinum analogues, cisplatin and carboplatin, are among the most widely used chemotherapeutic agents in oncology. Both agents have a broad spectrum of clinical activity in numerous malignancies including gynaecological cancers, germ cell tumours, head and neck cancer, thoracic cancers and bladder cancer. Although the final mechanism of inducing tumour cell apoptosis is similar for both compounds, cisplatin has been shown to be more effective in treating specific tumour types. Whilst more favourable toxicity profiles are often associated with carboplatin, this can frequently translate to inferior response in certain malignancies. This review succinctly collates the evidence for the preferential use of these platinum analogues in particular settings in addition to the long-standing dilemma surrounding the paucity of biomarkers predicting response to these agents

    CHK1 inhibitor SRA737 is active in PARP inhibitor resistant and CCNE1 amplified ovarian cancer

    No full text
    Summary: High-grade serous ovarian cancers (HGSOCs) with homologous recombination deficiency (HRD) are initially responsive to poly (ADP-ribose) polymerase inhibitors (PARPi), but resistance ultimately emerges. HGSOC with CCNE1 amplification (CCNE1amp) are associated with resistance to PARPi and platinum treatments. High replication stress in HRD and CCNE1amp HGSOC leads to increased reliance on checkpoint kinase 1 (CHK1), a key regulator of cell cycle progression and the replication stress response. Here, we investigated the anti-tumor activity of the potent, highly selective, orally bioavailable CHK1 inhibitor (CHK1i), SRA737, in both acquired PARPi-resistant BRCA1/2 mutant and CCNE1amp HGSOC models. We demonstrated that SRA737 increased replication stress and induced subsequent cell death in vitro. SRA737 monotherapy in vivo prolonged survival in CCNE1amp models, suggesting a potential biomarker for CHK1i therapy. Combination SRA737 and PARPi therapy increased tumor regression in both PARPi-resistant and CCNE1amp patient-derived xenograft models, warranting further study in these HGSOC subgroups

    ABCC4/MRP4 contributes to the aggressiveness of Myc-associated epithelial ovarian cancer.

    Get PDF
    Epithelial ovarian cancer (EOC) is a complex disease comprising discrete histological and molecular subtypes, for which survival rates remain unacceptably low. Tailored approaches for this deadly heterogeneous disease are urgently needed. Efflux pumps belonging to the ATP-binding cassette (ABC) family of transporters are known for roles in both drug resistance and cancer biology and are also highly targetable. Here we have investigated the association of ABCC4/MRP4 expression to clinical outcome and its biological function in endometrioid and serous tumors, common histological subtypes of EOC. We found high expression of ABCC4/MRP4, previously shown to be directly regulated by c-Myc/N-Myc, was associated with poor prognosis in endometrioid EOC (P = .001) as well as in a subset of serous EOC with a high-MYCN profile (C5/proliferative; P = .019). Transient siRNA-mediated suppression of MRP4 in EOC cells led to reduced growth, migration and invasion, with the effects being most pronounced in endometrioid and C5-like serous cells compared to non-C5 serous EOC cells. Sustained knockdown of MRP4 also sensitized endometrioid cells to MRP4 substrate drugs. Furthermore, suppression of MRP4 decreased the growth of patient-derived EOC cells in vivo. Together, our findings provide the first evidence that MRP4 plays an important role in the biology of Myc-associated ovarian tumors and highlight this transporter as a potential therapeutic target for EOC

    ABCC4

    No full text
    Epithelial ovarian cancer (EOC) is a complex disease comprising discrete histological and molecular subtypes, for which survival rates remain unacceptably low. Tailored approaches for this deadly heterogeneous disease are urgently needed. Efflux pumps belonging to the ATP-binding cassette (ABC) family of transporters are known for roles in both drug resistance and cancer biology and are also highly targetable. Here we have investigated the association of ABCC4/MRP4 expression to clinical outcome and its biological function in endometrioid and serous tumors, common histological subtypes of EOC. We found high expression of ABCC4/MRP4, previously shown to be directly regulated by c-Myc/N-Myc, was associated with poor prognosis in endometrioid EOC (P = .001) as well as in a subset of serous EOC with a high-MYCN profile (C5/proliferative; P = .019). Transient siRNA-mediated suppression of MRP4 in EOC cells led to reduced growth, migration and invasion, with the effects being most pronounced in endometrioid and C5-like serous cells compared to non-C5 serous EOC cells. Sustained knockdown of MRP4 also sensitized endometrioid cells to MRP4 substrate drugs. Furthermore, suppression of MRP4 decreased the growth of patient-derived EOC cells in vivo. Together, our findings provide the first evidence that MRP4 plays an important role in the biology of Myc-associated ovarian tumors and highlight this transporter as a potential therapeutic target for EOC

    The microtubule inhibitor eribulin demonstrates efficacy in platinum-resistant and refractory high-grade serous ovarian cancer patient-derived xenograft models

    No full text
    Background: Despite initial response to platinum-based chemotherapy and PARP inhibitor therapy (PARPi), nearly all recurrent high-grade serous ovarian cancer (HGSC) will acquire lethal drug resistance; indeed, ~15% of individuals have de novo platinum-refractory disease. Objectives: To determine the potential of anti-microtubule agent (AMA) therapy (paclitaxel, vinorelbine and eribulin) in platinum-resistant or refractory (PRR) HGSC by assessing response in patient-derived xenograft (PDX) models of HGSC. Design and methods: Of 13 PRR HGSC PDX, six were primary PRR, derived from chemotherapy-naïve samples (one was BRCA2 mutant) and seven were from samples obtained following chemotherapy treatment in the clinic (five were mutant for either BRCA1 or BRCA2 ( BRCA1/2) , four with prior PARPi exposure), recapitulating the population of individuals with aggressive treatment-resistant HGSC in the clinic. Molecular analyses and in vivo treatment studies were undertaken. Results: Seven out of thirteen PRR PDX (54%) were sensitive to treatment with the AMA, eribulin (time to progressive disease (PD) ⩾100 days from the start of treatment) and 11 out of 13 PDX (85%) derived significant benefit from eribulin [time to harvest (TTH) for each PDX with p  < 0.002]. In 5 out of 10 platinum-refractory HGSC PDX (50%) and one out of three platinum-resistant PDX (33%), eribulin was more efficacious than was cisplatin, with longer time to PD and significantly extended TTH (each PDX p  < 0.02). Furthermore, four of these models were extremely sensitive to all three AMA tested, maintaining response until the end of the experiment (120d post-treatment start). Despite harbouring secondary BRCA2 mutations, two BRCA2 -mutant PDX models derived from heavily pre-treated individuals were sensitive to AMA. PRR HGSC PDX models showing greater sensitivity to AMA had high proliferative indices and oncogene expression. Two PDX models, both with prior chemotherapy and/or PARPi exposure, were refractory to all AMA, one of which harboured the SLC25A40-ABCB1 fusion, known to upregulate drug efflux via MDR1. Conclusion: The efficacy observed for eribulin in PRR HGSC PDX was similar to that observed for paclitaxel, which transformed ovarian cancer clinical practice. Eribulin is therefore worthy of further consideration in clinical trials, particularly in ovarian carcinoma with early failure of carboplatin/paclitaxel chemotherapy
    corecore