9,773 research outputs found

    Dependence of the Fundamental Plane Scatter on Galaxy Age

    Get PDF
    The fundamental plane (FP) has an intrinsic scatter that can not be explained purely by observational errors. Using recently available age estimates for nearby early type galaxies, we show that a galaxy's position relative to the FP depends on its age. In particular, the mean FP corresponds to ellipticals with an age of ~10 Gyr. Younger galaxies are systematically brighter with higher surface brightness relative to the mean relation. Old ellipticals form an `upper envelope' to the FP. For our sample of mostly non-cluster galaxies, age can account for almost half of the scatter in the B band FP. Distance determinations based on the FP may have a systematic bias, if the mean age of the sample varies with redshift. We also show that fundamental plane residuals, B-V colors and Mg_2 line strength are consistent with an ageing central burst superposed on an old stellar population. This reinforces the view that these age estimates are tracing the last major episode of star formation induced by a gaseous merger event. We briefly discuss the empirical `evolutionary tracks' of merger-remnants and young ellipticals in terms of their key observational parameters.Comment: 14 pages, Latex, 2 figures, accepted by ApJ Letter

    Optimum take-off angle in the long jump

    Get PDF
    In this study, we found that the optimum take-off angle for a long jumper may be predicted by combining the equation for the range of a projectile in free flight with the measured relations between take-off speed, take-off height and take-off angle for the athlete. The prediction method was evaluated using video measurements of three experienced male long jumpers who performed maximum-effort jumps over a wide range of take-off angles. To produce low take-off angles the athletes used a long and fast run-up, whereas higher take-off angles were produced using a progressively shorter and slower run-up. For all three athletes, the take-off speed decreased and the take-off height increased as the athlete jumped with a higher take-off angle. The calculated optimum take-off angles were in good agreement with the athletes' competition take-off angles

    \u3cem\u3eβ\u3c/em\u3e-Homopipitzolone

    Get PDF
    The structure of β-homopipitzolone (one of the two isomers of an intermediate product in the homocedrole synthesis) has been unequivocally established as 1 O-hydroxy-2,6,9-trimetbyltricyclo[6.3.1.01,6] dodeca-9-ene-5, II, 12-trione with relative IR,2R,6R,8S configuration

    The Nature of Nearby Counterparts to Intermediate Redshift Luminous Compact Blue Galaxies I. Optical/H I Properties and Dynamical Masses

    Full text link
    We present single-dish H I spectra obtained with the Green Bank Telescope, along with optical photometric properties from the Sloan Digital Sky Survey, of 20 nearby (D < 70 Mpc) Luminous Compact Blue Galaxies (LCBGs). These ~L*, blue, high surface brightness, starbursting galaxies were selected with the same criteria used to define LCBGs at higher redshifts. We find these galaxies are gas-rich, with M(HI) ranging from 5*10^8 to 8*10^9 M_sun, and M(HI)/L_B ranging from 0.2 to 2 M_sun/L_sun, consistent with a variety of morphological types of galaxies. We find the dynamical masses (measured within R_25) span a wide range, from 3*10^9 to 1*10^11 M_sun. However, at least half have dynamical mass-to-light ratios smaller than nearby galaxies of all Hubble types, as found for LCBGs at intermediate redshifts. By comparing line widths and effective radii with local galaxy populations, we find that LCBGs are consistent with the dynamical mass properties of Magellanic (low luminosity) spirals, and the more massive irregulars and dwarf ellipticals, such as NGC 205.Comment: 33 pages, 8 figures, accepted by Ap
    • …
    corecore