β-Homopipitzolone

Ezequiel Huipe Nava

Instituto Tecnologico de Morelia
V. A. Igonin

Institute of Organoelement Compounds
Sergey V.Lindeman
Marquette University, sergey.lindeman@marquette.edu
Yuri T. Struchkov
Institute of Organoelement Compounds
V.Mendoza

Universidad Michoacana de San Nicolas de Hidalgo

See next page for additional authors

Published version. Acta Crystallographica Section C, Vol. 49 (1993): 1207-1209. DOI. © 1993 International Union of Crystallography. Used with permission.

Authors

Ezequiel Huipe Nava, V. A. Igonin, Sergey V. Lindeman, Yuri T. Struchkov, V. Mendoza, G. Garcia, and J. A. Guzman

Acta Cryst. (1993). C49, 1207-1209

β-Homopipitzolone

E. Huipe-Nava

Instituto Tecnologico de Morelia, Apdo. Postal 13-G, Morelia, Michoacan, Mexico

V. A. Igonin, S. V. Lindeman and Yu. T.

Struchkov
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow B-334, Russia

V. Mendoza, E. Garcia G. and J. A. Guzman

Instituto de Investigaciones Quimico-Biologicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan, Mexico
(Received 16 June 1992; accepted 22 December 1992)

Abstract

The structure of β-homopipitzolone (one of the two isomers of an intermediate product in the homocedrole synthesis) has been unequivocally established as $\quad 10$-hydroxy-2,6,9-trimethyltricyclo[6.3.1.0 ${ }^{1,6}$]do-deca-9-ene-5,11,12-trione with relative $1 R, 2 R, 6 R, 8 S$ configuration.

Comment

The thermal (Walls, Padilla, Joseph-Nathan, Giral \& Romo, 1965; Joseph-Nathan, Mendoza \& Garcia, 1977) and catalytic (Sanchez, Yanez, Enriquez \& Joseph-Nathan, 1981) transformations of perezone produce a mixture of α - and β-pipitzols. In continuation of our investigations in this field, we have prepared the new $\boldsymbol{\alpha}$ - and $\boldsymbol{\beta}$-homopipitzolone mixture from modified perezone (Mendoza, Garcia, Reyes \&
© 1993 International Union of Crystallography

Guzman, 1988). However, the structures of these compounds have not been assigned unambiguously. Thus, the X-ray diffraction study of β-homopipitzolone (1) was undertaken.

(1)

Molecule (1) has a tricyclic framework. The cycle A has a distorted chair conformation with the C13and C14-methyl groups in equatorial and axial orientations, respectively. The five-membered cycle B, cis-fused to the cycle A, has a conformation intermediate between $1 \alpha, 12 \beta$-twist and 12β envelope. The six-membered cycle C has a distorted 12β-sofa conformation. The absolute chirality of molecule (1) could not be established objectively and was arbitrarily assigned as $1 R, 2 R, 6 R, 8 S$.

The molecule (1) exists, in the crystal, in the enol form with a $\mathrm{C} 9=\mathrm{C} 10$ double bond $[1.337$ (3) \AA] and an O4-hydroxy group. The latter takes part in intermolecular hydrogen bonding with the O 2 -oxo group of the molecule related by 2_{1} axes [$\mathrm{O} 4 \cdots{ }^{\cdots} 2^{\prime} 2.735$ (2), $\mathrm{O} 4-\mathrm{H} 40.86$ (2), $\mathrm{H} 4 \cdots \mathrm{O} 2^{\prime} 2.18$ (2) $\AA, \mathrm{O} 4-\mathrm{H} 4 \cdots 2^{\prime}$ $\left.122(2)^{\circ}\right]$ which results in the formation of infinite chains along the x axis. The relative weakness of this hydrogen bond may be explained by the participation of the $\mathrm{O} 4-\mathrm{H} 4$ group in the additional intramolecular interaction $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{Ol}$ [O4 $\cdots \mathrm{O} 1$ 2.712 (3), $\mathrm{H} 4 \cdots \mathrm{O} 12.21$ (3) $\AA, \mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 117$ (2) ${ }^{\circ}$].

Fig. 1. General view of the molecule (1).

Fig. 2. Crystal structure of (1) with the hydrogen-bonded chains of molecules along the x axis.

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$
$M_{r}=262.3$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=9.045$ (3) \AA
$b=9.670$ (3) \AA
$c=14.807$ (4) \AA
$V=1295.1(7) \AA^{3}$
$Z=4$
$D_{x}=1.345 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$

Data collection

Siemens $P 3 / P C$ diffractome-	$\theta_{\text {max }}=50^{\circ}$
ter	$h=0 \rightarrow 11$
$\theta / 2 \theta$ scans	$k=0 \rightarrow 12$
Absorption correction:	$l=0 \rightarrow 19$

none
1802 measured reflections
1802 independent reflections 1802 observed reflections
$[F \geq 6.0 \sigma(F)]$

Refinement

Refinement on F
Final $R=0.033$
$w R=0.032$
$S=0.52$
1453 reflections
244 parameters
All H -atom parameters refined

Cell parameters from 24 reflections
$\theta=24-26^{\circ}$
$\mu=0.097 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
Needles
$0.75 \times 0.10 \times 0.05 \mathrm{~mm}$
Colourless
Crystal source: from warn ethanol solution

$$
\begin{aligned}
& \theta_{\max }=50^{\circ} \\
& h=0 \rightarrow 11 \\
& k=0 \rightarrow 12 \\
& l=0 \rightarrow 19
\end{aligned}
$$

2 standard reflections monitored every 98 reflections intensity variation: $\pm 2.1 \%$

$$
w=1 / \sigma^{2}(F)
$$

$(\Delta / \sigma)_{\max }=0.15$
$\Delta \rho_{\max }=0.158 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.188 \mathrm{e} \AA^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})

$$
U_{\mathrm{eq}}=\frac{1}{3} \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i}, \mathbf{a}_{j} .
$$

	x	y	z	$U_{\text {eq }}$
01	0.0825 (2)	0.7040 (2)	0.2957 (1)	0.032 (1)
O2	-0.5281 (2)	0.5810 (2)	0.3200 (2)	0.044 (1)
03	-0.2181 (2)	0.7018 (2)	0.5323 (1)	0.035 (1)
04	0.2055 (2)	0.4820 (2)	0.3787 (1)	0.035 (1)
C1	-0.1552 (2)	0.6860 (2)	0.3701 (1)	0.020 (1)
C2	-0.1740 (3)	0.8419 (2)	0.3523 (2)	0.024 (1)
C3	-0.3356 (3)	0.8855 (3)	0.3554 (2)	0.033 (1)
C4	-0.4304 (3)	0.8030 (3)	0.2897 (2)	0.037 (1)
C5	-0.4196 (3)	0.6519 (3)	0.3108 (2)	0.027 (1)
C6	-0.2639 (2)	0.5881 (3)	0.3159 (2)	0.021 (1)
C7	-0.2687 (3)	0.4501 (3)	0.3697 (2)	0.029 (1)
C8	-0.1845 (3)	0.4779 (3)	0.4586 (2)	0.026 (1)
C9	-0.0226 (3)	0.4407 (3)	0.4502 (2)	0.027 (1)
C10	0.0621 (3)	0.5170 (3)	0.3955 (2)	0.027 (1)
C11	0.0051 (2)	0.6411 (2)	0.3487 (1)	0.022 (1)
C12	-0.1888 (3)	0.6350 (3)	0.4666 (2)	0.023 (1)
C13	-0.0814 (3)	0.9316 (3)	0.4163 (2)	0.033 (1)
C14	-0.2144 (3)	0.5653 (3)	0.2173 (2)	0.031 (1)
C15	0.0330 (4)	0.3157 (3)	0.4994 (2)	0.042 (1)

Table 2. Geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$)

$\mathrm{Ol}-\mathrm{Cll}$	1.215 (3)	C4-C5	1.497 (4)
O2-C5	1.204 (3)	C5-C6	1.540 (3)
O3-C12	1.197 (3)	C6-C7	1.555 (4)
O4-C10	1.363 (3)	C6-C14	1.544 (3)
C1-C2	1.540 (3)	C7-C8	1.544 (4)
C1-C6	1.583 (3)	C8-C9	1.513 (4)
$\mathrm{C} 1-\mathrm{C} 11$	1.546 (3)	C8-C12	1.525 (3)
C1-C12	1.542 (3)	C9-C10	1.337 (3)
C2-C3	1.522 (4)	C9-C15	1.499 (4)
C2-C13	1.534 (4)	C10-C11	1.479 (3)
C3-C4	1.523 (4)		
C2-C1-C6	115.5 (2)	C5-C6-C14	106.0 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 11$	110.1 (2)	C7-C6-C14	111.8 (2)
C2-Cl-C12	116.7 (2)	C6-C7-C8	105.8 (2)
C6-Cl-C11	108.1 (2)	C7-C8-C9	111.5 (2)
C6-C1-C12	99.0 (2)	C7-C8-C12	103.2 (2)
C11-C1-C12	106.5 (2)	C9-C8-C12	105.5 (2)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	111.9 (2)	C8-C9-C10	118.3 (2)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{Cl} 3$	112.8 (2)	C8-C9-C15	118.5 (2)
C3-C2-C13	110.4 (2)	C10-C9-C15	123.2 (2)
C2-C3-C4	112.1 (2)	O4-C10-C9	121.3 (2)
C3-C4-C5	110.0 (2)	O4-C10-Cl1	116.6 (2)
O2-C5-C4	121.8 (2)	C9--C10-C11	122.1 (2)
O2-C5-C6	120.7 (2)	$\mathrm{O} 1-\mathrm{Cl1}-\mathrm{Cl}$	122.1 (2)
C4-C5-C6	117.5 (2)	O1-C11-C10	120.5 (2)
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C5}$	110.7 (2)	$\mathrm{Cl}-\mathrm{Cl1}-\mathrm{C} 10$	117.3 (2)
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 7$	105.8 (2)	O3-C12-C1	128.6 (2)
C1-C6-C14	112.6 (2)	O3-C12-C8	127.4 (2)
C5-C6-C7	110.1 (2)	C1-C12-C8	103.9 (2)
C1-C2-C3-C4	-55.9 (3)	C8-C12-C1-C6	46.7 (2)
C2-C3-C4-C5	58.5 (3)	$\mathrm{C} 12-\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 7$	-33.0 (2)
C3-C4-C5-C6	-53.7 (3)	$\mathrm{Cl}-\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 9$	74.1 (3)
C4-C5-C6-C1	43.7 (3)	C12-C8-C9-C10	-43.5 (3)
C5-C6-C1-C2	-39.3 (3)	C8-C9-C10-C11	4.4 (4)
C6-C1-C2-C3	46.6 (3)	C9-C10-C11-Cl	3.9 (3)
Cl-C6-C7-C8	8.2 (3)	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 12$	27.4 (2)
C6-C7-C8-C12	20.6 (3)	C11-C1-C12-C8	-65.3 (2)
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12-\mathrm{Cl}$	-42.9 (3)		

All calculations were performed by the SHELXTL-Plus programs (Sheldrick, 1987) with an IBM-PC/AT computer. Absolute configuration was not determined because of the lack of anomalous scatterers.

Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55940 (8 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: VS1002]

References

Joseph-Nathan, P., Mendoza, V. \& Garcia, E. (1977). Tetrahedron, 33, 1573-1576.
Mendoza, V., Garcia, E., Reyes, M. \& Guzman, J. A. (1988). XXIV Congreso Mexicano de Quimica Pura y Aplicada, Queretaro, Qro., Mexico, Abstr. 161.
Sanchez, I. H., Yanez, R., Enriquez, R. \& Joseph-Nathan, P. (1981). J. Org. Chem. 46, 2818-2819.

Sheldrick, G. M. (1987). SHELXTL-Plus. PC version. Siemens Analytical X-ray instruments, Inc., Madison, Wisconsin, USA.
Walls, F., Padilla, J., Joseph-Nathan, P., Giral, F. \& Romo, J. (1965). Tetrahedron Lett. pp. 1577-1582.

Acta Cryst. (1993). C49, 1209-1211

Structure of 4-Nitrobenzyl N-(4-Nitrobenzyloxy)trifluoroacetimidate

D. M. Brown and P. Kong Thoo Lin
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England

L. Van Meervelt

Laboratorium voor Macromoleculaire Structuurchemie, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
(Received 14 October 1992; accepted 18 December 1992)

Abstract

The molecular structure of the title compound is characterized by the cisoid geometry of the oximinoether residue.

\section*{Comment}

In experiments that were directed to the synthesis of polyamine analogues, a series of condensations were carried out between primary alcohols and N -trifluoroacetamidooxyalkyl derivatives by the Mitsunobu reaction (Mitsunobu, 1981). It was hoped that the condensation would lead to N -alkyltrifluoroacetamidooxy derivatives. However, the sole

(C) 1993 International Union of Crystallography

