4,257 research outputs found

    Study of the pore structure of ceramics prepared by the slip casting method

    Get PDF
    The porosity of the slip cast Si3N4 is similar to that of pressed Si3N4 formed at 2500 kg/sq cm. The porosity of cast Si oxynitride is equivalent to that of samples stressed at 10,000 kg/sq cm. Crucibles formed from these materials by slip casting have high thermal shock and corrosion resistance

    First Detection of 12CO (1--0) Emission from Two Narrow-Line Seyfert 1 Galaxies

    Full text link
    In order to investigate how the growth of galactic bulges progresses with the growth of central black holes (BHs), we observed molecular gas (fuel for the coming star formation) in possibly young active galaxies, narrow-line Seyfert 1 galaxies (NLS1s). We present the results of radio observations of 12CO(1--0) using the Nobeyama Millimeter Array (with 2--4 kpc spatial resolution) for two FIR-bright NLS1s, yielding the first detection of their CO emission. Corresponding molecular--gas masses M(H2) of (1-3) X 109 Msun are the 2nd and 4th largest ones among NLS1s. By estimating dynamical masses and bulge masses M(bulge) for these two NLS1s using CO channel map and CO line widths, we found M(H2) amount to 0.13--0.35 of these masses. Taking account the star formation efficiency (~ 0.1), the increase in M(bulge) in those NLS1s in the near future (~< 10^{7.5} yr) is expected not to be a huge fraction (1--5% of the preexisting stars). Bulge growth may have finished before BH growth, or bulge--BH coevolution may proceed with many, occasional discrete events, where one coevolution event produces only a small amount of mass growth of BHs and of bulges. We also discuss the ratios of star-formation rate--to--gas accretion rate onto BHs, finding that two NLS1s have very small ratios (~ 1) compared with the M(bulge)/M(BH) ratios found in active and inactive galaxies (~ 700). This huge difference suggests either the non-overlapped coevolution, long star formation duration or temporarily high accretion rate during NLS1 phase.Comment: 29 pages, 8 figures, Accepted for publication in The Astrophysical Journa

    Near-Infrared Imaging of Early-Type Galaxies III. The Near-Infrared Fundamental Plane

    Full text link
    Near-infrared imaging data on 251 early-type galaxies in clusters and groups are used to construct the near-infrared Fundamental Plane (FP) r_eff ~ sigma_0^1.53 _eff^-0.79. The slope of the FP therefore departs from the virial expectation of r_eff ~ sigma_0^2 _eff^-1 at all optical and near-infrared wavelengths, which could be a result of the variation of M/L along the elliptical galaxy sequence, or a systematic breakdown of homology among the family of elliptical galaxies. The slope of the near-infrared FP excludes metallicity variations as the sole cause of the slope of the FP. Age effects, dynamical deviations from a homology, or any combination of these (with or without metallicity), however, are not excluded. The scatter of both the near-infrared and optical FP are nearly identical and substantially larger than the observational uncertainties, demonstrating small but significant intrinsic cosmological scatter for the FP at all wavelengths. The lack of a correlation of the residuals of the near-infrared FP and the residuals from the Mg_2-sigma relation indicates that the thickness of these relations cannot be ascribed only to age or metallicity effects. Due to this metallicity independence, the small scatter of the near-infrared FP excludes a model in which age and metallicity effects ``conspire'' to keep the optical FP thin. All of these results suggest that the possible physical origins of the FP relations are complicated due to combined effects of variations of stellar populations and structural parameters among elliptical galaxies.Comment: to appear in The Astronomical Journal; 35 pages, including 13 Postscript figures and 1 table; uses AAS LaTeX style file

    The Fundamental Plane of Gravitational Lens Galaxies and The Evolution of Early-Type Galaxies in Low Density Environments

    Get PDF
    Most gravitational lenses are early-type galaxies in relatively low density environments -- a ``field'' rather than a ``cluster'' population. We show that field early-type galaxies with 0 < z < 1, as represented by the lens galaxies, lie on the same fundamental plane as those in rich clusters at similar redshifts. We then use the fundamental plane to measure the combined evolutionary and K-corrections for early-type galaxies in the V, I and H bands. Only for passively evolving stellar populations formed at z > 2 (H_0=65 km/s Mpc, Omega_0=0.3, Lambda_0=0.7) can the lens galaxies be matched to the local fundamental plane. The high formation epoch and the lack of significant differences between the field and cluster populations contradict many current models of the formation history of early-type galaxies. Lens galaxy colors and the fundamental plane provide good photometric redshift estimates with an empirical accuracy of -0.03 +/- 0.11 for the 17 lenses with known redshifts. A mass model dominated by dark matter is more consistent with the data than either an isotropic or radially anisotropic constant M/L mass model, and a radially anisotropic model is better than an isotropic model.Comment: 36 pages, 9 figures, 6 tables. ApJ in press. Final version contains more observational dat

    Secondary Organic Aerosol Formation from the ÎČ-Pinene+NO3 System: Effect of Humidity and Peroxy Radical Fate

    Get PDF
    The formation of secondary organic aerosol (SOA) from the oxidation of ÎČ-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber (GTEC) facility. Aerosol yields are determined for experiments performed under both dry (relative humidity (RH) \u3c 2 %) and humid (RH = 50 % and RH = 70 %) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, RO2 + NO3 dominant and RO2 + HO2 dominant experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231, and 245 amu, which likely correspond to molecular formulas of C10H17NO4, C10H15NO5, C10H17NO5, and C10H15NO6, respectively) are detected by chemical ionization mass spectrometry (CIMS) and their formation mechanisms are proposed. The NO+ (at m/z 30) and NO2+ (at m/z 46) ions contribute about 11 % to the combined organics and nitrate signals in the typical aerosol mass spectrum, with the NO+ : NO2+ ratio ranging from 4.8 to 10.2 in all experiments conducted. The SOA yields in the RO2 + NO3 dominant and RO2 + HO2 dominant experiments are comparable. For a wide range of organic mass loadings (5.1–216.1 ÎŒg m−3), the aerosol mass yield is calculated to be 27.0–104.1 %. Although humidity does not appear to affect SOA yields, there is evidence of particle-phase hydrolysis of organic nitrates, which are estimated to compose 45–74 % of the organic aerosol. The extent of organic nitrate hydrolysis is significantly lower than that observed in previous studies on photooxidation of volatile organic compounds in the presence of NOx. It is estimated that about 90 and 10 % of the organic nitrates formed from the ÎČ-pinene+NO3 reaction are primary organic nitrates and tertiary organic nitrates, respectively. While the primary organic nitrates do not appear to hydrolyze, the tertiary organic nitrates undergo hydrolysis with a lifetime of 3–4.5 h. Results from this laboratory chamber study provide the fundamental data to evaluate the contributions of monoterpene + NO3 reaction to ambient organic aerosol measured in the southeastern United States, including the Southern Oxidant and Aerosol Study (SOAS) and the Southeastern Center for Air Pollution and Epidemiology (SCAPE) study

    Probing the evolution of early-type cluster galaxies through chemical enrichment

    Get PDF
    A simple chemical enrichment model for cluster early-type galaxies is described in which the mechanisms considered in the evolutionary model are infall of primordial gas, outflows and a possible variation in the star formation efficiency. We find that - within the framework of our models - only outflows can generate a suitable range of metallicities. The chemical enrichment tracks can be combined with the latest population synthesis models to simulate clusters over a wide redshift range, for a set of toy models. The color-magnitude relation of local clusters is used as a constraint, fixing the correlation between absolute luminosity and ejected fraction of gas from outflows. It is found that the correlations between color or mass-to-light ratios and absolute luminosity are degenerate with respect to most of the input parameters. However, a significant change between monolithic and hierarchical models is predicted for redshifts z\simgt 1. The comparison between predicted and observed mass-to-light ratios yield an approximate linear bias between total and stellar masses: MTot∝MSt1.15±0.08M_{\rm Tot}\propto M_{\rm St}^{1.15\pm 0.08} in early-type galaxies. If we assume that outflows constitute the driving mechanism for the colors observed in cluster early type galaxies, the metallicity of the intracluster medium (ICM) can be linked to outflows. The color-magnitude constraint requires faint MV∌−16M_V\sim -16 galaxies to eject 85% of their gas, which means that most of the metals in the ICM may have originated in these dwarf galaxies.Comment: Accepted for publication in ApJ. Uses emulateapj.sty. 12 pages with 10 embedded EPS figure

    Phase dynamics in a binary-collisions atom laser scheme

    Full text link
    Various aspects of the phase dynamics of an atom laser scheme based on binary collisions are investigated. Analytical estimates of the influence of elastic atom-atom collisions on the laser linewidth are given, and linewidths achievable in a recently proposed atom laser scheme [Phys. Rev. A 56, 2989 (1997)] are evaluated explicitly. The extent to which a relative phase can be established between two interfering atom lasers, as well as the properties of that phase, are also investigated.Comment: Revtex, 10 pages, 6 figure

    Effects of interatomic collisions on atom laser outcoupling

    Full text link
    We present a computational approach to the outcoupling in a simple one-dimensional atom laser model, the objective being to circumvent mathematical difficulties arising from the breakdown of the Born and Markov approximations. The approach relies on the discretization of the continuum representing the reservoir of output modes, which allows the treatment of arbitrary forms of outcoupling as well as the incorporation of non-linear terms in the Hamiltonian, associated with interatomic collisions. By considering a single-mode trapped condensate, we study the influence of elastic collisions between trapped and free atoms on the quasi steady-state population of the trap, as well as the energy distribution and the coherence of the outcoupled atoms.Comment: 25 pages, 11 figures, to appear in J. Phys.
    • 

    corecore