2,020 research outputs found

    Exciton transport in thin-film cyanine dye J-aggregates

    Get PDF
    We present a theoretical model for the study of exciton dynamics in J-aggregated monolayers of fluorescent dyes. The excitonic evolution is described by a Monte-Carlo wave function approach which allows for a unified description of the quantum (ballistic) and classical (diffusive) propagation of an exciton on a lattice in different parameter regimes. The transition between the ballistic and diffusive regime is controlled by static and dynamic disorder. As an example, the model is applied to three cyanine dye J-aggregates: TC, TDBC, and U3. Each of the molecule-specific structure and excitation parameters are estimated using time-dependent density functional theory. The exciton diffusion coefficients are calculated and analyzed for different degrees of film disorder and are correlated to the physical properties and the structural arrangement of molecules in the aggregates. Further, exciton transport is anisotropic and dependent on the initial exciton energy. The upper-bound estimation of the exciton diffusion length in the TDBC thin-film J-aggregate is of the order of hundreds of nanometers, which is in good qualitative agreement with the diffusion length estimated from experiments.Comment: 16 pages, 14 figure

    Optical Spectra of p-Doped PEDOT Nano-Aggregates Provide Insight into the Material Disorder

    Full text link
    Highly doped Poly(3,4-ethylenedioxythiophene) or PEDOT is a conductive polymer with a wide range of applications in energy conversion due to its ease of processing, optical properties and high conductivity. The latter is influenced by processing conditions, including formulation, annealing, and solvent treatment of the polymer, which also affects the polymer arrangement. Here we show that the analysis of the optical spectra of PEDOT domains reveals the nature and magnitude of the structural disorder in the material. In particular, the optical spectra of objects on individual domains can be used for the elucidation of the molecular disorder in oligomer arrangement which is a key factor affecting the conductivity

    Time-scales of Line-broadening Variability in OB Supergiants

    Full text link
    Several works have recently shown that there is an important extra line-broadening (usually called macroturbulencemacroturbulence) affecting the spectra of O and B Supergiants that adds to stellar rotation. So far, the only (very recent) physical explanation for the appearance of macroturbulencemacroturbulence relates to oscillations. This is a plausible explanation, but no direct evidence confirming its validity has been presented yet. We recently started an observational project to obtain constraints on the time-scales of variability associated to this extra line-broadening and its possible origin. Our observational strategy consists of the study of a well selected group of O and B stars, for which we obtain time series of high-quality spectra. We present some preliminary results from our first campaign with [email protected]: 3 pages, 3 figures, 2 tables, Proceeding of the conference "Stellar pulsation: Challenges for theory and Observations" held in Santa Fe, New Mexico (May 31-June 5, 2009

    Molecular Realization of a Quantum NAND Tree

    Full text link
    The negative-AND (NAND) gate is universal for classical computation making it an important target for development. A seminal quantum computing algorithm by Farhi, Goldstone and Gutmann has demonstrated its realization by means of quantum scattering yielding a quantum algorithm that evaluates the output faster than any classical algorithm. Here, we derive the NAND outputs analytically from scattering theory using a tight-binding (TB) model and show the restrictions on the TB parameters in order to still maintain the NAND gate function. We map the quantum NAND tree onto a conjugated molecular system, and compare the NAND output with non-equilibrium Green's function (NEGF) transport calculations using density functional theory (DFT) and TB Hamiltonians for the electronic structure. Further, we extend our molecular platform to show other classical gates that can be realized for quantum computing by scattering on graphs.Comment: 17 pages, 6 figures, 1 tabl

    Positivity in the presence of initial system-environment correlation

    Get PDF
    The constraints imposed by the initial system-environment correlation can lead to nonpositive Dynamical maps. We find the conditions for positivity and complete positivity of such dynamical maps by using the concept of an assignment map. Any initial system-environment correlations make the assignment map nonpositive, while the positivity of the dynamical map depends on the interplay between the assignment map and the system-environment coupling. We show how this interplay can reveal or hide the nonpositivity of the assignment map. We discuss the role of this interplay in Markovian models.Comment: close to the published version. 5 pages, 1 figur

    Cepheids and Long Period Variables in M33

    Full text link
    We are conducting a long-term photometric survey of the nearby galaxy M33 to discover Cepheids, eclipsing binaries, and long-period variables. The dataset combines previously-obtained optical images from the DIRECT project with new observations acquired at the WIYN 3.5m telescope. The entire data set spans over 7 years with excellent synoptic coverage which will enable the discovery and characterization of stars displaying variability over a wide range of timescales (days, weeks, months, years). In this preliminary work we show representative light curves of different variables we found so far in two fields, color-magnitude diagrams, and optical Cepheid Period-Luminosity relations for M33. The ultimate goal of the project is to provide an absolute calibration of the Cepheid Period-Luminosity relation, and to study its metallicity dependence at optical wavelengths.Comment: 3 pages, 6 figures. To appear in "Stellar Pulsation: Challenges for Theory and Observation", Eds. J. Guzik and P. Bradle
    corecore