1,875 research outputs found

    Scaling and localization lengths of a topologically disordered system

    Get PDF
    We consider a noninteracting disordered system designed to model particle diffusion, relaxation in glasses, and impurity bands of semiconductors. Disorder originates in the random spatial distribution of sites. We find strong numerical evidence that this model displays the same universal behavior as the standard Anderson model. We use finite-size-scaling to find the localization length as a function of energy and density, including localized states away from the delocalization transition. Results at many energies all fit onto the same universal scaling curve.Comment: 5+ page

    The Connection Between Pulsation, Mass Loss and Circumstellar Shells in Classical Cepheids

    Full text link
    Recent observations of Cepheids using infrared interferometry and Spitzer photometry have detected the presence of circumstellar envelopes (CSE) of dust and it has been hypothesized that the CSE's are due to dust forming in a Cepheid wind. Here we use a modified Castor, Abbott & Klein formalism to produce a Cepheid wind, and this is used to estimate the contribution of mass loss to the Cepheid mass discrepancy Furthermore, we test the OGLE-III Classical Cepheids using the IR fluxes from the SAGE survey to determine if Large Magellanic Cloud Cepheids have CSE's. It is found that IR excess is a common phenomenon for LMC Cepheids and that the resulting mass-loss rates can explain at least a fraction of the Cepheid mass discrepancy, depending on the assumed dust-to-gas ratio in the wind.Comment: 5 pages, 3 figures, proceeding for "Stellar Pulsation: Challenges for Theory and Observation", Santa Fe 200

    The LHCb Timing and Fast Control system

    Get PDF
    In this paper we describe the LHCb Timing and Fast Control (TFC) system. It is different from that of the other LHC experiments in that it has to support two levels of high-rate triggers. Furthermore, emphasis has been put on partitioning and on locating the TFC mastership in one type of module: the Readout Supervisor. The Readout Supervisor handles all timing, trigger, and control command distribution. It generates auto-triggers as well as controls the trigger rates. Partitioning is handled by a programmable patch panel/switch introduced in the TTC distribution network between a pool of Readout Supervisors and the Front-End electronics. I

    Nitric oxide modulates expression of extracellular matrix genes linked to fibrosis in kidney mesangial cells

    Get PDF
    Mesangial cells are thought to be important mediators of glomerular inflammation and fibrosis. Studies have established a direct role for nitric oxide (NO) in the regulation of gene expression in mesangial cells. Representational difference analysis was used to investigate changes in gene expression elicited by the treatment of S-nitroso-L-glutathione in rat mesangial cells. Seven upregulated and 11 downregulated genes were identified. Four out of 11 downregulated genes (connective tissue growth factor, thrombospondin-1, collagen type I all and collagen type I alpha 2) are known to be linked to inflammation and fibrosis. Results were verified across species in mesangial cells treated with a series of NO donors using Northern blot analysis, quantitative real-time PCR and protein analysis methods. Induction of endogenous NO production by cytokine stimulation also triggered regulation of the genes. One example gene, connective tissue growth factor, was studied at the promoter level. Promoter-reporter gene studies in mesangial cells demonstrated that NO acts at the transcriptional level to suppress gene expression. Our results reveal a complex role of NO in regulating gene expression in mesangial cells and suggest an antifibrotic potential for NO

    Discrete single-photon quantum walks with tunable decoherence

    Get PDF
    Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of optical elements required scales linearly with the number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show that decoherence significantly affects the probability of absorption.Comment: Published version, 5 pages, 4 figure

    Quantum Algorithm for Molecular Properties and Geometry Optimization

    Get PDF
    It is known that quantum computers, if available, would allow an exponential decrease in the computational cost of quantum simulations. We extend this result to show that the computation of molecular properties (energy derivatives) could also be sped up using quantum computers. We provide a quantum algorithm for the numerical evaluation of molecular properties, whose time cost is a constant multiple of the time needed to compute the molecular energy, regardless of the size of the system. Molecular properties computed with the proposed approach could also be used for the optimization of molecular geometries or other properties. For that purpose, we discuss the benefits of quantum techniques for Newton's method and Householder methods. Finally, global minima for the proposed optimizations can be found using the quantum basin hopper algorithm, which offers an additional quadratic reduction in cost over classical multi-start techniques.Comment: 6 page

    Vibrational Instability of Metal-Poor Low-Mass Main-Sequence Stars

    Full text link
    We find that low-degree low-order g-modes become unstable in metal-poor low-mass stars due to the ε\varepsilon-mechanism of the pp-chain. Since the outer convection zone of these stars is limited only to the very outer layers, the uncertainty in the treatment of convection does not affect the result significantly. The decrease in metallicity leads to decrease in opacity and hence increase in luminosity of a star. This makes the star compact and results in decrease in the density contrast, which is favorable to the ε\varepsilon-mechanism instability. We find also instability for high order g-modes of metal-poor low-mass stars by the convective blocking mechanism. Since the effective temperature and the luminosity of metal-poor stars are significantly higher than those of Pop I stars, the stars showing γ\gamma Dor-type pulsation are substantially less massive than in the case of Pop I stars. We demonstrate that those modes are unstable for about 1 M⊙1\,M_\odot stars in the metal-poor case.Comment: 4 pages, 4 figures, To be published in Astrophysics and Space Science Proceedings series (ASSP). Proceedings of the "20th Stellar Pulsation Conference Series: Impact of new instrumentation and new insights in stellar pulsations", 5-9 September 2011, Granada, Spai

    Toward a New Kind of Asteroseismic Grid Fitting

    Get PDF
    Recent developments in instrumentation (e.g., in particular the Kepler and CoRoT satellites) provide a new opportunity to improve the models of stellar pulsations. Surface layers, rotation, and magnetic fields imprint erratic frequency shifts, trends, and other non-random behavior in the frequency spectra. As our observational uncertainties become smaller, these are increasingly important and difficult to deal with using standard fitting techniques. To improve the models, new ways to compare their predictions with observations need to be conceived. In this paper we present a completely probabilistic (Bayesian) approach to asteroseismic model fitting. It allows for varying degrees of prior mode identification, corrections for the discrete nature of the grid, and most importantly implements a treatment of systematic errors, such as the "surface effects." It removes the need to apply semi- empirical corrections to the observations prior to fitting them to the models and results in a consistent set of probabilities with which the model physics can be probed and compared. As an example, we show a detailed asteroseismic analysis of the Sun. We find a most probable solar age, including a 35 +- 5 million year pre-main sequence phase, of 4.591 billion years, and initial element mass fractions of X_0 = 0.72, Y_0 = 0.264, Z_0 = 0.016, consistent with recent asteroseismic and non-asteroseismic studies.Comment: 15 pages, 5 figures, accepted for publication in The Astrophysical Journal; v2 contains minor changes made in the proofs (updated references & corrected typos
    • …
    corecore