3 research outputs found

    The third dimension in river restoration: how anthropogenic disturbance changes boundary conditions for ecological mitigation

    Get PDF
    The goals of the European Water Framework Directive changed the perspective on rivers from human to ecosystem-based river management. After decades of channelizing and damming rivers, restoration projects are applied with more or less successful outcomes. The anthropogenic influence put on rivers can change their physical parameters and result in a different morphological type of river. Using the Ammer River as an example, a comparison between applied systems of corridor determination based on historical maps and data; calculation of regime width; and the change in parameters and river typology are pointed out. The results showed (a) a change in stream power and morphology (b) great difference between the historical and the predicted river type and (c) that regulated rivers can have a near-natural morphology

    Structural features and functional activities of benzimidazoles as NOD2 antagonists

    No full text
    NOD1 and NOD2 are pattern recognition receptors that have important roles in innate immune responses. Although their overactivation has been linked to a number of diseases, NOD2 in particular remains a virtually unexploited target in this respect, with only one structural class of antagonist reported. To gain insight into the structure-activity relationships of NOD2 antagonists, a series of novel analogs was designed and synthesized, and then screened for antagonist activity versus NOD2, and counter-screened versus NOD1. Compounds 32 and 38 were identified as potent and moderately selective NOD2 antagonists, and 33 and 42 as dual NOD1/NOD2 antagonists, with balanced activities against both targets in the low micromolar range. These data enable in-depth exploration of their structure-activity relationships and provide deeper understanding of the structural features required for NOD2 antagonism
    corecore