20 research outputs found

    Rapid changes in root HvPIP2; 2 aquaporins abundance and ABA concentration are required to enhance root hydraulic conductivity and maintain leaf water potential in response to increased evaporative demand

    Get PDF
    To address the involvement of abscisic acid (ABA) in regulating transpiration and root hydraulic conductivity (Lp(Root)) and their relative importance for maintaining leaf hydration, the ABA-deficient barley mutant Az34 and its parental wild-type (WT) genotype (cv. Steptoe) were grown in hydroponics and exposed to changes in atmospheric vapour pressure deficit (VPD) imposed by air warming. WTplants were capable of maintaining leaf water potential (psi(L)) that was likely due to increased Lp(Root) enabling higher water flow from the roots, which increased in response to air warming. The increased Lp(Root) and immunostaining for HvPIP2; 2 aquaporins (AQPs) correlated with increased root ABA content of WT plants when exposed to increased air temperature. The failure of Az34 to maintain psi(L) during air warming may be due to lower Lp(Root) than WT plants, and an inability to respond to changes in air temperature. The correlation between root ABA content and Lp(Root) was further supported by increased root hydraulic conductivity in both genotypes when treated with exogenous ABA (10(-5) M). Thus the ability of the root system to rapidly regulate ABA levels (and thence aquaporin abundance and hydraulic conductivity) seems important to maintain leaf hydration

    Exogenous application of abscisic acid (ABA) increases root and cell hydraulic conductivity and abundance of some aquaporin isoforms in the ABA-deficient barley mutant Az34

    Get PDF
    Background and Aims Regulation of water channel aquaporins (AQPs) provides another mechanism by which abscisic acid (ABA) may influence water flow through plants. To the best of our knowledge, no studies have addressed the changes in ABA levels, the abundance of AQPs and root cell hydraulic conductivity (Lp(Cell)) in the same tissues. Thus, we followed the mechanisms by which ABA affects root hydraulics in an ABA-deficient barley mutant Az34 and its parental line 'Steptoe'. We compared the abundance of AQPs and ABA in cells to determine spatial correlations between AQP abundance and local ABA concentrations in different root tissues. In addition, abundance of AQPs and ABA in cortex cells was related to Lp(Cell). Methods Root hydraulic conductivity (Lp(Root)) was measured by means of root exudation analyses and Lp(Cell) using a cell pressure probe. The abundance of ABA and AQPs in root tissues was assessed through immunohistochemical analyses. Isoform-specific antibodies raised against HvPIP2; 1, HvPIP2; 2 and HvPIP2; 5 were used. Key Results Immunolocalization revealed lower ABA levels in root tissues of Az34 compared with ` Steptoe'. Root hydraulic conductivity (Lp(Root)) was lower in Az34, yet the abundance of HvPIPs in root tissues was similar in the two genotypes. Root hair formation occurred closer to the tip, while the length of the root hair zone was shorter in Az34 than in ` Steptoe'. Application of external ABA to the root medium of Az34 and ` Steptoe' increased the immunostaining of root cells for ABA and for HvPIP2; 1 and HvPIP2; 2 especially in root epidermal cells and the cortical cell layer located beneath, parallel to an increase in Lp(Root) and Lp(Cell). Treatment of roots with Fenton reagent, which inhibits AQP activity, prevented the ABA-induced increase in root hydraulic conductivity. Conclusion Shortly after (<2 h) ABA application to the roots of ABA-deficient barley, increased tissue ABA concentrations and AQP abundance (especially the plasma-membrane localized isoforms HvPIP2;1 and HvPIP2;2) were spatially correlated in root epidermal cells and the cortical cell layer located beneath, in conjunction with increased LpCell of the cortical cells. In contrast, long-term ABA deficiency throughout seedling development affects root hydraulics through other mechanisms, in particular the developmental timing of the formation of root hairs closer to the root tip and the length of the root hair zone

    Involvement of Reactive Oxygen Species in ABA-Induced Increase in Hydraulic Conductivity and Aquaporin Abundance

    No full text
    The role of reactive oxygen species (ROS) in ABA-induced increase in hydraulic conductivity was hypothesized to be dependent on an increase in aquaporin water channel (AQP) abundance. Single ABA application or its combination with ROS manipulators (ROS scavenger ascorbic acid and NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI)) were studied on detached roots of barley plants. We measured the osmotically driven flow rate of xylem sap and calculated root hydraulic conductivity. In parallel, immunolocalization of ABA and HvPIP2;2 AQPs was performed with corresponding specific antibodies. ABA treatment increased the flow rate of xylem, root hydraulic conductivity and immunostaining for ABA and HvPIP2;2, while the addition of antioxidants prevented the effects of this hormone. The obtained results confirmed the involvement of ROS in ABA effect on hydraulic conductivity, in particular, the importance of H2O2 production by ABA-treated plants for the effect of this hormone on AQP abundance

    Root ABA Accumulation Delays Lateral Root Emergence in Osmotically Stressed Barley Plants by Decreasing Root Primordial IAA Accumulation

    No full text
    Increased auxin levels in root primordia are important in controlling root branching, while their interaction with abscisic acid (ABA) likely regulates lateral root development in water-deficient plants. The role of ABA accumulation in regulating root branching was investigated using immunolocalization to detect auxin (indoleacetic acid, IAA) and ABA (abscisic acid) in root primordia of the ABA-deficient barley mutant Az34 and its parental genotype (cv. Steptoe) barley plants. Osmotic stress strongly inhibited lateral root branching in Steptoe plants, but hardly affected Az34. Root primordial cells of Steptoe plants had increased immunostaining for ABA but diminished staining for IAA. ABA did not accumulate in root primordia of the Az34, and IAA levels and distribution were unaltered. Treating Az34 plants with exogenous ABA decreased root IAA concentration, while increasing root primordial ABA accumulation and decreasing root primordial IAA concentration. Although ABA treatment of Az34 plants increased the root primordial number, it decreased the number of visible emerged lateral roots. These effects were qualitatively similar to that of osmotic stress on the number of lateral root primordia and emerged lateral roots in Steptoe. Thus ABA accumulation (and its crosstalk with auxin) in root primordia seems important in regulating lateral root branching in response to water stress

    Effects of Plant Growth Promoting Rhizobacteria on the Content of Abscisic Acid and Salt Resistance of Wheat Plants

    No full text
    Although salinity inhibits plant growth, application of appropriate rhizosphere bacteria can diminish this negative effect. We studied one possible mechanism that may underlie this beneficial response. Wheat plants were inoculated with Bacillus subtilis IB-22 and Pseudomonas mandelii IB-Ki14 and their consequences for growth, water relations, and concentrations of the hormone abscisic acid (ABA) were followed in the presence of soil salinity. Salinity alone increased ABA concentration in wheat leaves and roots and this was associated with decreased stomatal conductance, but also with chlorophyll loss. Bacterial treatment raised ABA concentrations in roots, suppressed accumulation of leaf ABA, decreased chlorophyll loss, and promoted leaf area and transpiration. However, water balance was maintained due to increased water uptake by inoculated plants, brought about in part by a larger root system. The effect may be the outcome of ABA action since the hormone is known to maintain root extension in stressed plants. Root ABA concentration was highest in salt-stressed plants inoculated with B. subtilis and this contributed to greater root hydraulic conductivity. We conclude that bacteria can raise salt resistance in wheat by increasing root ABA, resulting in larger root systems that can also possess enhanced hydraulic conductivity thereby supporting better-hydrated leaves

    Effect of Salinity on Stomatal Conductance, Leaf Hydraulic Conductance, HvPIP2 Aquaporin, and Abscisic Acid Abundance in Barley Leaf Cells

    No full text
    The stomatal closure of salt-stressed plants reduces transpiration bringing about the maintenance of plant tissue hydration. The aim of this work was to test for any involvement of aquaporins (AQPs) in stomatal closure under salinity. The changes in the level of aquaporins in the cells were detected with the help of an immunohistochemical technique using antibodies against HvPIP2;2. In parallel, leaf sections were stained for abscisic acid (ABA). The effects of salinity were compared to those of exogenously applied ABA on leaf HvPIP2;2 levels and the stomatal and leaf hydraulic conductance of barley plants. Salinity reduced the abundance of HvPIP2;2 in the cells of the mestome sheath due to it being the more likely hydraulic barrier due to the deposition of lignin, accompanied by a decline in the hydraulic conductivity, transpiration, and ABA accumulation. The effects of exogenous ABA differed from those of salinity. This hormone decreased transpiration but increased the shoot hydraulic conductivity and PIP2;2 abundance. The difference in the action of the exogenous hormone and salinity may be related to the difference in the ABA distribution between leaf cells, with the hormone accumulating mainly in the mesophyll of salt-stressed plants and in the cells of the bundle sheaths of ABA-treated plants. The obtained results suggest the following succession of events: salinity decreases water flow into the shoots due to the decreased abundance of PIP2;2 and hydraulic conductance, while the decline in leaf hydration leads to the production of ABA in the leaves and stomatal closure

    Effect of probiotic strains of

    No full text
    In this paper, the probiotic properties of Bacillus subtilis GM2 and GM5 strains were studied. It is shown that the use of probiotic additives based on the spores of these bacteria leads to an increase in the live weight gain of broiler chickens by 4.16% and 10.76% relative to the control. Metagenomic analysis showed that representatives of the phylum Firmicutes (54.55%) and Bacteroidetes (30.45%), mainly represented by the families Ruminococcacea and Bacteroidaceae, predominate in the caecal microbiota of broiler chickens on day 42. It was found that a probiotic based on the B. subtilis GM5 strain leads to an increase in the proportion of Firmicutes in caecum by 27% and a decrease in Bacteroidetes by 19%. There was also a significant decrease in the number of representatives of opportunistic pathogenic bacteria of the Enterobacteriaceae family relative to the control group

    The Effects of Rhizosphere Inoculation with <i>Pseudomonas mandelii</i> on Formation of Apoplast Barriers, HvPIP2 Aquaporins and Hydraulic Conductance of Barley

    No full text
    Pseudomonas mandelii strain IB-Ki14 has recently been shown to strengthen the apoplastic barriers of salt-stressed plants, which prevents the entry of toxic sodium. It was of interest to find out whether the same effect manifests itself in the absence of salinity and how this affects the hydraulic conductivity of barley plants. Berberine staining confirmed that the bacterial treatment enhanced the deposition of lignin and suberin and formation of Casparian bands in the roots of barley plants. The calculation of hydraulic conductance by relating transpiration to leaf water potential showed that it did not decrease in bacteria-treated plants. We hypothesized that reduced apoplastic conductivity could be compensated by the higher conductivity of the water pathway across the membranes. This assumption was confirmed by the results of the immunolocalization of HvPIP2;5 aquaporins with specific antibodies, showing their increased abundance around the areas of the endodermis and exodermis of bacteria-treated plants. The immunolocalization with antibodies against auxins and abscisic acid revealed elevated levels of these hormones in the roots of plants treated with bacteria. This root accumulation of hormones is likely to be associated with the ability of Pseudomonas mandelii IB-Ki14 to synthesize these hormones. The involvement of abscisic acid in the control of aquaporin abundance and auxins—in the regulation of and formation of apoplast barriers—is discussed

    Effects of a <i>Pseudomonas</i> Strain on the Lipid Transfer Proteins, Appoplast Barriers and Activity of Aquaporins Associated with Hydraulic Conductance of Pea Plants

    No full text
    Lipid transfer proteins (LTPs) are known to be involved in suberin deposition in the Casparian bands of pea roots, thereby reinforcing apoplast barriers. Moreover, the Pseudomonas mandelii IB-Ki14 strain accelerated formation of the Casparian bands in wheat plants, although involvement of LTPs in the process was not studied. Here, we investigated the effects of P. mandelii IB-Ki14 on LTPs, formation of the Casparian bands, hydraulic conductance and activity of aquaporins (AQPs) in pea plants. RT PCR showed a 1.6-1.9-fold up-regulation of the PsLTP-coding genes and an increase in the abundance of LTP proteins in the phloem of pea roots induced by the treatment with P. mandelii IB-Ki14. The treatment was accompanied with increased deposition of suberin in the Casparian bands. Hydraulic conductance did not decrease in association with the bacterial treatment despite strengthening of the apoplast barriers. At the same time, the Fenton reagent, serving as an AQPs inhibitor, decreased hydraulic conductance to a greater extent in treated plants relative to the control group, indicating an increase in the AQP activity by the bacteria. We hypothesize that P. mandelii IB-Ki14 stimulates deposition of suberin, in the biosynthesis of which LTPs are involved, and increases aquaporin activity, which in turn prevents a decrease in hydraulic conductance due to formation of the apoplast barriers in pea roots
    corecore