17 research outputs found

    Inference of the Arabidopsis Lateral Root Gene Regulatory Network Suggests a Bifurcation Mechanism That Defines Primordia Flanking and Central Zones

    Get PDF
    A large number of genes involved in lateral root (LR) organogenesis have been identified over the last decade using forward and reverse genetic approaches in Arabidopsis thaliana. Nevertheless, how these genes interact to form a LR regulatory network largely remains to be elucidated. In this study, we developed a time-delay correlation algorithm (TDCor) to infer the gene regulatory network (GRN) controlling LR primordium initiation and patterning in Arabidopsis from a time-series transcriptomic data set. The predicted network topology links the very early-activated genes involved in LR initiation to later expressed cell identity markers through a multistep genetic cascade exhibiting both positive and negative feedback loops. The predictions were tested for the key transcriptional regulator AUXIN RESPONSE FACTOR7 node, and over 70% of its targets were validated experimentally. Intriguingly, the predicted GRN revealed a mutual inhibition between the ARF7 and ARF5 modules that would control an early bifurcation between two cell fates. Analyses of the expression pattern of ARF7 and ARF5 targets suggest that this patterning mechanism controls flanking and central zone specification in Arabidopsis LR primordia

    Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet

    Get PDF
    Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment

    PIN transcriptional regulation shapes root system architecture

    Get PDF
    Regulation of auxin distribution by PIN transporters is key in the dynamic modulation of root growth and branching. Three novel papers shed light on an intricate network through which several hormones and transcriptional regulators collectively fine-tune the transcriptional level of these auxin transporters in the root

    Lateral Root Formation: Building a Meristem de novo

    No full text
    International audienceThe complex and adaptable architecture of the plant root system in soil is of paramount importance for crop growth and performance. Root growth depends on the activity of the root apical meristem, an organized population of proliferating progenitor cells continuously replenished from a stem cell niche. Root branching, which greatly contributes to root system architecture in most dicot species, consists in de novoformation of new root meristems in existing root tissues. This phenomenon illustrates the ability of plants to repeatedly generate new tissues specialized in post-embryonic continuous growth and greatly impacts the elaboration of the root system architecture and its adaptation to environmental constraints. Here, we review the recent findings and models related to lateral root organogenesis in the dicot species Arabidopsis thaliana, with emphasis on the mechanisms controlling de novoroot meristem formation. Experimental evidence suggests that critical regulatory modules are common between embryonic and post-embryonic root meristem organogenesis, and that the lateral root formation molecular pathway is in part common with organ regeneration from callus

    The Spring of Systems Biology-Driven Breeding

    No full text
    International audienceGenetics and molecular biology have contributed to the development of rationalized plant breeding programs. Recent developments in both high-throughput experimental analyses of biological systems and in silico data processing offer the possibility to address the whole gene regulatory network (GRN) controlling a given trait. GRN models can be applied to identify topological features helping to shortlist potential candidate genes for breeding purposes. Time-series data sets can be used to support dynamic modelling of the network. This will enable a deeper comprehension of network behaviour and the identification of the few elements to be genetically rewired to push the system towards a modified phenotype of interest. This paves the way to design more efficient, systems biology-based breeding strategies

    A plausible model of phyllotaxis

    No full text
    A striking phenomenon unique to the kingdom of plants is the regular arrangement of lateral organs around a central axis, known as phyllotaxis. Recent molecular-genetic experiments indicate that active transport of the plant hormone auxin is the key process regulating phyllotaxis. A conceptual model based on these experiments, introduced by Reinhardt et al. [Reinhardt, D., Pesce, E. R., Stieger, P., Mandel, T., Baltensperger, K., et al. (2003) Nature 426, 255–260], provides an intuitively plausible interpretation of the data, but raises questions of whether the proposed mechanism is, in fact, capable of producing the observed temporal and spatial patterns, is robust, can start de novo, and can account for phyllotactic transitions, such as the frequently observed transition from decussate to spiral phyllotaxis. To answer these questions, we created a computer simulation model based on data described previously or in this paper and reasonable hypotheses. The model reproduces, within the standard error, the divergence angles measured in Arabidopsis seedlings and the effects of selected experimental manipulations. It also reproduces distichous, decussate, and tricussate patterns. The model thus offers a plausible link between molecular mechanisms of morphogenesis and the geometry of phyllotaxis

    MGOUN3: evidence for chromatin-mediated regulation of FLC expression

    No full text
    The MGOUN3(MGO3)/BRUSHY1(BRU1)/TONSOKU(TSK) gene of Arabidopsis thaliana encodes a nuclear leucine– glycine–asparagine (LGN) domain protein that may be implicated in chromatin dynamics and genome maintenance. Mutants with defects in MGO3 display a fasciated stem and disorganized meristem structures. The transition to flowering was examined in mgo3 mutants and it was found that, under short days, the mutants flowered significantly earlier than the wildtype plants. Study of flowering-time associated gene expression showed that the floral transition inhibitor gene FLC was under-expressed in the mutant background. Ectopic expression of the flower-specific genes AGAMOUS (AG), PISTILLATA (PI), and SEPAL-LATA3 (SEP3) in mgo3 vegetative organs was also detected. Western blot and chromatin immunoprecipitation experiments suggested that histone H3 acetylation may be altered in the mgo3 background. Together, these data suggest that MGO3 is required for the correct transition to flowering and that this may be mediated by histone acetylation and associated changes in FLC expression
    corecore