10,368 research outputs found

    Vibrational relaxation in expanding N2 and air

    Get PDF
    New N2 vibrational temperature data, obtained in expanding N2 and air using the electron beam technique, are analyzed permitting the vibrational relaxation times to be determined as a function of temperature. In addition, the effects on N2 vibrational relaxation times of direct vibrational energy transfer between N2 and H2O, between N2 and O2, and between N2 and free electrons introduced from arc contaminants are analyzed. The vibrational relaxation times determined from the present measurements agree with those measured in the expanding flows of shock tunnels and impact tubes. These expanding data also agree with relaxation times observed in acoustical resonant cavities where alternating compressions and expansions take place. The relaxation times in expanding flows (vib-tran exchange process) are found to be approximately 50 times faster than those measured in the compressing flow of shock tubes (tran-vib exchange process). This evidence strongly supports the concept that one relaxation time distribution cannot be applied to both exchange processes

    Next-to-Leading Order Shear Viscosity in lambda phi^4 Theory

    Full text link
    We show that the shear viscosity of lambda phi^4 theory is sensitive at next-to-leading order to soft physics, which gives rise to subleading corrections suppressed by only a half power of the coupling, eta = [3033.54 + 1548.3 m_{th}/T] N T^3]/[ (N+2)/3 lambda^2], with m^2_th=(N+2)/72 lambda T^2. The series appears to converge about as well (or badly) as the series for the pressure.Comment: 4 pages, 1 figure. Typos fixed, tiny change in discussio

    Localized shear generates three-dimensional transport

    Full text link
    Understanding the mechanisms that control three-dimensional (3D) fluid transport is central to many processes including mixing, chemical reaction and biological activity. Here a novel mechanism for 3D transport is uncovered where fluid particles are kicked between streamlines near a localized shear, which occurs in many flows and materials. This results in 3D transport similar to Resonance Induced Dispersion (RID); however, this new mechanism is more rapid and mutually incompatible with RID. We explore its governing impact with both an abstract 2-action flow and a model fluid flow. We show that transitions from one-dimensional (1D) to two-dimensional (2D) and 2D to 3D transport occur based on the relative magnitudes of streamline jumps in two transverse directions.Comment: Copyright 2017 AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishin

    Thin waveguides with Robin boundary conditions

    Full text link
    We consider the Laplace operator in a thin three dimensional tube with a Robin type condition on its boundary and study, asymptotically, the spectrum of such operator as the diameter of the tube's cross section becomes infinitesimal. In contrast with the Dirichlet condition case, we evidence different behaviors depending on a symmetry criterium for the fundamental mode in the cross section. If that symmetry condition fails, then we prove the localization of lower energy levels in the vicinity of the minimum point of a suitable function on the tube's axis depending on the curvature and the rotation angle. In the symmetric case, the behavior of lower energy modes is shown to be ruled by a one dimensional Sturm-Liouville problem involving an effective potential given in explicit form

    Marine Benthic Habitat Mapping of Muir Inlet, Glacier Bay National Park and Preserve, Alaska With an Evaluation of the Coastal and Marine Ecological Classification Standard III

    Get PDF
    Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes

    THE ANALYSIS OF THE USE AI IN PIG BREEDING

    Get PDF

    Determination of the critical current density in the d-wave superconductor YBCO under applied magnetic fields by nodal tunneling

    Full text link
    We have studied nodal tunneling into YBa2Cu3O7-x (YBCO) films under magnetic fields. The films' orientation was such that the CuO2 planes were perpendicular to the surface with the a and b axis at 450 form the normal. The magnetic field was applied parallel to the surface and perpendicular to the CuO2 planes. The Zero Bias Conductance Peak (ZBCP) characteristic of nodal tunneling splits under the effect of surface currents produced by the applied fields. Measuring this splitting under different field conditions, zero field cooled and field cooled, reveals that these currents have different origins. By comparing the field cooled ZBCP splitting to that taken in decreasing fields we deduce a value of the Bean critical current superfluid velocity, and calculate a Bean critical current density of up to 3*10^7 A/cm2 at low temperatures. This tunneling method for the determination of critical currents under magnetic fields has serious advantages over the conventional one, as it avoids having to make high current contacts to the sample.Comment: 8 pages, 2 figure
    • …
    corecore