65 research outputs found
Efficient Batch Verification for UP
Consider a setting in which a prover wants to convince a verifier of the correctness of k NP statements. For example, the prover wants to convince the verifier that k given integers N_1,...,N_k are all RSA moduli (i.e., products of equal length primes). Clearly this problem can be solved by simply having the prover send the k NP witnesses, but this involves a lot of communication. Can interaction help? In particular, is it possible to construct interactive proofs for this task whose communication grows sub-linearly with k?
Our main result is such an interactive proof for verifying the correctness of any k UP statements (i.e., NP statements that have a unique witness). The proof-system uses only a constant number of rounds and the communication complexity is k^delta * poly(m), where delta>0 is an arbitrarily small constant, m is the length of a single witness, and the poly term refers to a fixed polynomial that only depends on the language and not on delta. The (honest) prover strategy can be implemented in polynomial-time given access to the k (unique) witnesses.
Our proof leverages "interactive witness verification" (IWV), a new type of proof-system that may be of independent interest. An IWV is a proof-system in which the verifier needs to verify the correctness of an NP statement using: (i) a sublinear number of queries to an alleged NP witness, and (ii) a short interaction with a powerful but untrusted prover. In contrast to the setting of PCPs and Interactive PCPs, here the verifier only has access to the raw NP witness, rather than some encoding thereof
Simple Doubly-Efficient Interactive Proof Systems for Locally-Characterizable Sets
A proof system is called doubly-efficient if the prescribed prover strategy can be implemented in polynomial-time and the verifier\u27s strategy can be implemented in almost-linear-time.
We present direct constructions of doubly-efficient interactive proof systems for problems in P that are believed to have relatively high complexity. Specifically, such constructions are presented for t-CLIQUE and t-SUM. In addition, we present a generic construction of such proof systems for a natural class that contains both problems and is in NC (and also in SC). The proof systems presented by us are significantly simpler than the proof systems presented by Goldwasser, Kalai and Rothblum (JACM, 2015), let alone those presented by Reingold, Rothblum, and Rothblum (STOC, 2016), and can be implemented using a smaller number of rounds
Abstracting Fairness: Oracles, Metrics, and Interpretability
It is well understood that classification algorithms, for example, for
deciding on loan applications, cannot be evaluated for fairness without taking
context into account. We examine what can be learned from a fairness oracle
equipped with an underlying understanding of ``true'' fairness. The oracle
takes as input a (context, classifier) pair satisfying an arbitrary fairness
definition, and accepts or rejects the pair according to whether the classifier
satisfies the underlying fairness truth. Our principal conceptual result is an
extraction procedure that learns the underlying truth; moreover, the procedure
can learn an approximation to this truth given access to a weak form of the
oracle. Since every ``truly fair'' classifier induces a coarse metric, in which
those receiving the same decision are at distance zero from one another and
those receiving different decisions are at distance one, this extraction
process provides the basis for ensuring a rough form of metric fairness, also
known as individual fairness. Our principal technical result is a higher
fidelity extractor under a mild technical constraint on the weak oracle's
conception of fairness. Our framework permits the scenario in which many
classifiers, with differing outcomes, may all be considered fair. Our results
have implications for interpretablity -- a highly desired but poorly defined
property of classification systems that endeavors to permit a human arbiter to
reject classifiers deemed to be ``unfair'' or illegitimately derived.Comment: 17 pages, 1 figur
Decision-Making Under Miscalibration
ML-based predictions are used to inform consequential decisions about
individuals. How should we use predictions (e.g., risk of heart attack) to
inform downstream binary classification decisions (e.g., undergoing a medical
procedure)? When the risk estimates are perfectly calibrated, the answer is
well understood: a classification problem's cost structure induces an optimal
treatment threshold . In practice, however, some amount of
miscalibration is unavoidable, raising a fundamental question: how should one
use potentially miscalibrated predictions to inform binary decisions? We
formalize a natural (distribution-free) solution concept: given anticipated
miscalibration of , we propose using the threshold that minimizes
the worst-case regret over all -miscalibrated predictors, where the
regret is the difference in clinical utility between using the threshold in
question and using the optimal threshold in hindsight. We provide closed form
expressions for when miscalibration is measured using both expected and
maximum calibration error, which reveal that it indeed differs from
(the optimal threshold under perfect calibration). We validate our theoretical
findings on real data, demonstrating that there are natural cases in which
making decisions using improves the clinical utility
Recommended from our members
Are PCPs Inherent in Efficient Arguments?
Starting with Kilian (STOC ‘92), several works have shown how to use probabilistically checkable proofs (PCPs) and cryptographic primitives such as collision-resistant hashing to construct very efficient argument systems (a.k.a. computationally sound proofs), for example with polylogarithmic communication complexity. Ishai et al. (CCC ‘07) raised the question of whether PCPs are inherent in efficient arguments, and to what extent. We give evidence that they are, by showing how to convert any argument system whose soundness is reducible to the security of some cryptographic primitive into a PCP system whose efficiency is related to that of the argument system and the reduction (under certain complexity assumptions).Engineering and Applied Science
Preference-Informed Fairness
We study notions of fairness in decision-making systems when individuals have
diverse preferences over the possible outcomes of the decisions. Our starting
point is the seminal work of Dwork et al. which introduced a notion of
individual fairness (IF): given a task-specific similarity metric, every pair
of individuals who are similarly qualified according to the metric should
receive similar outcomes. We show that when individuals have diverse
preferences over outcomes, requiring IF may unintentionally lead to
less-preferred outcomes for the very individuals that IF aims to protect. A
natural alternative to IF is the classic notion of fair division, envy-freeness
(EF): no individual should prefer another individual's outcome over their own.
Although EF allows for solutions where all individuals receive a
highly-preferred outcome, EF may also be overly-restrictive. For instance, if
many individuals agree on the best outcome, then if any individual receives
this outcome, they all must receive it, regardless of each individual's
underlying qualifications for the outcome.
We introduce and study a new notion of preference-informed individual
fairness (PIIF) that is a relaxation of both individual fairness and
envy-freeness. At a high-level, PIIF requires that outcomes satisfy IF-style
constraints, but allows for deviations provided they are in line with
individuals' preferences. We show that PIIF can permit outcomes that are more
favorable to individuals than any IF solution, while providing considerably
more flexibility to the decision-maker than EF. In addition, we show how to
efficiently optimize any convex objective over the outcomes subject to PIIF for
a rich class of individual preferences. Finally, we demonstrate the broad
applicability of the PIIF framework by extending our definitions and algorithms
to the multiple-task targeted advertising setting introduced by Dwork and
Ilvento
- …