
Efficient Batch Verification for UP
Omer Reingold1

Stanford University
Palo Alto CA, USA
reingold@stanford.edu

Guy N. Rothblum
Weizmann Institute
Rehovot, Israel
rothblum@alum.mit.edu

Ron D. Rothblum2

MIT and Northeastern University
Cambridge and Boston MA, USA
ronr@csail.mit.edu

Abstract
Consider a setting in which a prover wants to convince a verifier of the correctness of k NP state-
ments. For example, the prover wants to convince the verifier that k given integers N1, . . . , Nk
are all RSA moduli (i.e., products of equal length primes). Clearly this problem can be solved by
simply having the prover send the k NP witnesses, but this involves a lot of communication. Can
interaction help? In particular, is it possible to construct interactive proofs for this task whose
communication grows sub-linearly with k?

Our main result is such an interactive proof for verifying the correctness of any k UP state-
ments (i.e., NP statements that have a unique witness). The proof-system uses only a constant
number of rounds and the communication complexity is kδ · poly(m), where δ > 0 is an arbi-
trarily small constant, m is the length of a single witness, and the poly term refers to a fixed
polynomial that only depends on the language and not on δ. The (honest) prover strategy can
be implemented in polynomial-time given access to the k (unique) witnesses.

Our proof leverages “interactive witness verification” (IWV), a new type of proof-system that
may be of independent interest. An IWV is a proof-system in which the verifier needs to verify
the correctness of an NP statement using: (i) a sublinear number of queries to an alleged NP
witness, and (ii) a short interaction with a powerful but untrusted prover. In contrast to the
setting of PCPs and Interactive PCPs, here the verifier only has access to the raw NP witness,
rather than some encoding thereof.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases Interactive Proof, Batch Verification, Unique Solution

Digital Object Identifier 10.4230/LIPIcs.CCC.2018.22

Related Version A full version of the paper is available at [30], https://eccc.weizmann.ac.
il/report/2018/022.

1 Supported by NSF grant CCF-1749750.
2 Research supported in part by NSF Grants CNS-1350619 and CNS-1414119, Alfred P. Sloan Research

Fellowship, Microsoft Faculty Fellowship and in part by the Defense Advanced Research Projects Agency
(DARPA), the U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236
and by the Cybersecurity and Privacy Institute at Northeastern University.

© Omer Reingold, Guy N. Rothblum,
and Ron D. Rothblum;
licensed under Creative Commons License CC-BY

33rd Computational Complexity Conference (CCC 2018).
Editor: Rocco A. Servedio; Article No. 22; pp. 22:1–22:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:reingold@stanford.edu
mailto:rothblum@alum.mit.edu
mailto:ronr@csail.mit.edu
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.22
https://eccc.weizmann.ac.il/report/2018/022
https://eccc.weizmann.ac.il/report/2018/022
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Efficient Batch Verification for UP

Acknowledgements We thank Oded Goldreich for illuminating conversations and particularly
for his insights that helped us crystallize the notion of Interactive Witness Verification.

1 Introduction

The power of efficiently verifiable proof-systems is a central question in the study of compu-
tation. Interactive proofs, introduced in the seminal work of Goldwasser, Micali and Rackoff
[24], are interactive protocols between a randomized verifier and an untrusted prover. The
prover convinces the verifier of the validity of a computational statement, usually framed as
membership of an input x in a language L. Soundness is unconditional. Namely, if the input
is not in the language, then no matter what (unbounded and adaptive) strategy a cheating
prover might employ, the verifier should reject with high probability over its own coin tosses.
Interactive proofs have had a dramatic impact on complexity theory and on cryptography.
Opening the door to randomized and interactive verification led to revolutionary notions
of proof verification, such as zero knowledge interactive proofs [24, 21] and probabilistically
checkable proofs (PCPs) [7, 15, 5, 4, 13, 3, 1]. Interactive proof-systems also allow for more
efficient verification of larger classes of computations (compared with NP proof systems), as
demonstrated in the celebrated IP = PSPACE Theorem [29, 33].

This work studies whether interactive proofs can allow for more efficient batch verification
of NP statements. Namely:

Can an untrusted prover convince a verifier of the correctness of k NP statements with
communication complexity that is sublinear in k?

Note that the naive solution is sending the k witnesses in their entirety. Looking ahead,
our main result answers this question in the affirmative for a rich subclass of NP (the class
UP of NP statements that have at most one witness). Along the way, we also introduce and
study a new notion of proof-system: Interactive Witness Verification (IWV), which allow for
the verification of NP statements using a sublinear number of queries to a “raw” (unencoded)
NP witness and a short interaction with an untrusted prover. We construct IWVs for a rich
subclass of NP, and these are a primary ingredient in our efficient batch verification protocol
for UP.

Before proceeding to detail these contributions, we observe that the membership of k
inputs in an NP language can be solved in space O(log k+m · poly(n)), where n is the length
of a single input and m is the length of a single NP witness. Thus, by the IP = PSPACE
Theorem, there is an interactive proof for batch verification with communication complexity
poly(log k, n,m). A major caveat, however, is that the complexity of proving correctness
(the running time of the honest prover) is exponential in poly(n,m). We, on the other hand,
focus on batch verification where the honest prover runs in polynomial time given the k NP
witnesses. We refer to such an interactive proof as having an efficient prover.3

3 Efficiency of the honest prover (given an NP witness) has been central in the study of zero-knowledge
interactive proofs [24, 21]. Our emphasis on an efficient honest prover is also inspired by the recent line
of work on doubly-efficient interactive proofs [23]. That line of work focuses on proofs for deterministic
polynomial-time computations and the prover is required to run in polynomial-time without any auxiliary
input. We remark that doubly efficient interactive proofs for deterministic computations do not seem to
imply protocols for non-deterministic computations such as those we consider here.

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:3

1.1 Our Results
Our main result is an interactive proof-system, with an efficient prover, for verifying the
correctness of k UP statements. Recall that UP refers to the subclass of NP statements
for which correct statements have a unique witness. The canonical example (of a promise
problem) in this class is unique-SAT in which one needs to distinguish unsatisfiable formulas
from those having a unique satisfying assignment. Multiple other examples arise from
cryptography, where problems related to factoring, discrete-log or lattices all have unique
solutions.

Our protocol for UP batch verification uses a constant number of rounds and has commu-
nication complexity (kδ · poly(m)), for any arbitrarily small constant δ > 0. For UP relations
that are checkable in polynomial-time and bounded polynomial space, we can reduce the
communication complexity to (kδ ·m1+δ). When the number of instances k is large, this
is a significant improvement over the trivial solution in which the prover sends over all k
witnesses.

I Theorem 1 (Informally Stated, see Theorem 13). Let L be a language in UP with witnesses
of length m. For every δ > 0, there exists a constant-round interactive proof for verifying
that k instances x1, . . . , xk, each of length n, all belong to L. The communication complexity
is kδ · poly(m). The verifier runs in time Õ(k ·n) + kδ · poly(m), where n is the length of each
of the instances. The honest prover runs in time poly(k, n,m) given the k unique witnesses.

Comparison to prior work. Theorem 1 improves over the aforementioned protocol derived
from IP = PSPACE theorem in two ways: (1) it has an efficient prover strategy (given the
witnesses), and (2) it uses only a constant number of rounds of interaction (whereas the
IP = PSPACE theorem uses poly(log k, n,m) rounds).

Theorem 1 also improves over a prior result for batch verification of UP statements [31].
The communication complexity of that protocol has an additional additive k · polylog(m)
term. In particular, even when k is larger than m, the [31] protocol gives at most a quadratic
saving over just naively sending all k witnesses. In contrast, our protocol yields an arbitrarily
large polynomial saving in the parameter k.4 A comparison of our techniques with those of
[31] is provided in Section 1.2.1.

A new type of proof-system. The protocol of Theorem 1 makes extensive use of a new
type of proof-system that we introduce and construct. In a nutshell, these are proof-systems
in which the verifier needs to check the correctness of an NP statement given oracle access
to the NP witness. In contrast to PCPs, the verifier is only given access to the raw (i.e.,
original) NP witness, rather than to an encoding thereof. We allow the verifier to have a
short interaction with an all powerful, but untrusted prover (this part of the interaction is
similar to the interactive PCPs of Kalai and Raz [27]). We use the name “interactive witness
verification” (IWV) for these proof-systems.

Jumping ahead, we remark that IWVs are closely related to interactive proofs of proximity
(IPPs) [12, 32]. Indeed, we show that IPPs for a class of deterministic polynomial-time
computations directly imply IWVs for a related class of NP relations. The IWV protocol
used in the proof of Theorem 1 is derived from known results on IPPs [32]. We proceed to
elaborate on the notion of IWVs.

4 We remark that a linear dependence of the communication complexity on m is inherent. Indeed, by
results of Goldreich et al. [20, 22], under complexity theoretic assumptions, even verification of a single
instance (i.e., k = 1) requires Ω(m) communication.

CCC 2018

22:4 Efficient Batch Verification for UP

1.1.1 Interactive Witness Verification
Motivation: sublinear witness verification. Suppose Alice wants to test whether a given
graph G is 3-colorable. The validity of an alleged 3-coloring χ can be verified in polynomial
time, but this requires reading every bit of the coloring. Can Alice verify χ’s validity while
reading a sublinear number of bits from χ?

At first glance, it may seem that PCPs give a direct solution to this problem. Recall that
a PCP is an encoding of an NP witness that can be verified by reading only a very small
number of bits. The celebrated PCP theorem [2] shows that every NP language has a PCP
proof-system. However, the reason that PCPs do not solve Alice’s problem is that she only
has oracle access to the original 3-coloring χ of the graph. In contrast, in the PCP setting,
the verifier is given oracle access to an encoding of the witness (e.g., via an error correcting
code).

Indeed, sublinear witness verification for general NP relations is not possible (assuming
that P 6= NP). Consider an NP relation for satisfiability where the witness is an encoding of
the m-bit satisfying assignment w on a polynomial of high degree (say degree 10m). The
polynomial is given by a list of valuations on field elements and the satisfying assignment
can be recovered by interpolating the polynomial. There are many possible polynomials that
encode a given satisfying assignment. In particular, if Alice is given a random polynomial
encoding the assignment, she must read Ω(m) valuations before she learns anything about
the alleged satisfying assignment.

Adding interaction. While sublinear witness verification for general NP relations is not
possible, this situation changes when we also allow interaction. Namely, we allow Alice to
interact with an untrusted prover Bob who knows the entire 3-coloring of the graph. The
communication should also be sublinear in the witness size (in particular, Bob cannot simply
send χ to Alice). Given the 3-coloring, an honest Bob should run in polynomial time.

More generally, an interactive witness verification for a given NP relation R for a language
L is a protocol between a prover P and verifier V, who both get as input an instance x. In
addition, the verifier has query access to an alleged witness w for x and the prover is given
full explicit access to w. The prover wants to convince the verifier that indeed (x,w) ∈ R.
Towards this end, the prover and verifier run an interactive protocol. The verifier V, on
examination of the communication transcript with P and the queried points in w, accepts
or rejects the prover’s claim. For completeness, if (x,w) ∈ R then the verifier V, when
interacting with the honest prover P, should accept. For soundness, we emphasize that the
witness w is fixed before the protocol begins. I.e., the soundness property is that if x /∈ L,
then for any fixed false witness w∗, and for any (unbounded) cheating prover strategy P∗, if
we run the interactive protocol between V and P∗, where V’s witness-queries are answered
using the fixed (false) witness w∗, then V will reject w.h.p. over its coins tosses. In terms of
complexity, our goal is to have both the number of witness-queries and the communication
be significantly smaller than m = |w|.

Note that an IWV refers to a specific NP relation, and not only to the underlying NP
language (which can have many possible NP relations). Indeed, every NP language has some
witness relation with an extremely efficient IWV.5 The point, however, is that we would like
to construct IWVs for arbitrary NP relations, not just highly structured ones.

5 Consider the relation in which witnesses are PCP proof strings. For such relations even the interaction
with the prover is unnecessary.

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:5

In particular, an IWV can be particularly useful in situations where the NP witness is
outside the prover’s control. For example, the witness could arise from nature in the form
of a physical or biological observation, in which case it is not reasonable to assume that it
is given in an encoded format. Thus, we find IWVs to be natural objects worthy of further
study (beyond their importance as a technical tool in our protocol for UP batch verification).

Constructions. We construct IWVs for a large class of NP relations. Namely, any NP
relation R that is checkable by bounded-space Turing machines or bounded-depth (logspace
uniform) circuits. This includes, for example, the natural NP relations for 3-coloring,
satisfiability, k-clique, etc. In the protocol the verifier only reads

√
m bits of the witness

and the communication complexity is also roughly
√
m (recall that m denotes the witness

length). Thus, the verifier only observes
√
m bits of information about the witness. More

precisely, we obtain the following result, which allows for a tradeoff between the query and
communication complexities:

I Theorem 2 (Informally Stated, see Theorem 9). Let q be a parameter. Let R be an NP
relation with witness length m that is checkable either by a bounded space Turing Machine or
by a bounded depth (logspace uniform) circuit. For every constant δ > 0, and q ∈ [m], there
exists an IWV for R in which the verifier reads q bits of the witness and the communication
complexity is O(m1+δ/q). Furthermore, the prover, given the NP witness, can be implemented
efficiently (i.e., in polynomial time). The verifier runs in time Õ(n+ q + (m1+δ/q)). For
bounded space relations the number of rounds is constant, and for bounded depth relations it
is polylog(n).

The proof of Theorem 2 relies on known constructions of interactive proofs of proximity
(IPPs). Loosely speaking, IPPs are interactive proofs in which the verifier runs in time that
is sub-linear in the input length and is convinced that the input is close to the language
(see Section 1.3 for additional details and related works on IPPs). Specifically, Theorem 2
follows from an IPP construction of Rothblum, Vadhan and Wigderson [32] (together with
an extension due to [31]).

In particular, IWVs are closely related to IPPs. To see this, observe that an IWV for a
relation R may be thought of as an IPP, where the IPP input is the IWV witness w, and
the goal is to check whether the witness is “close” to the language Lx = {w′ : (x,w′) ∈ R}.
Even though IWVs do not refer to the proximity of the witness to Lx, observe that if x is not
in the language, then Lx = ∅, and so any fixed w will have “infinite” distance from Lx. In
general, IWVs seem to be a more relaxed object than IPPs (in particular, the above reduction
gives instances with infinite distance).

Lower Bound for IWVs. We also give a lower bound for IWVs that shows that Theorem 2
is quantitatively almost tight. Moreover, the specific NP relation for which we demonstrate
this lower bound is in the class of relations for which we assume an IWV in the proof of
Theorem 1. For our lower bound to hold we assume the existence of an exponentially strong
cryptographic pseudorandom generator. The proof of the lower bound follows from a similar
lower bound of Kalai and Rothblum [28] for IPPs, but is somewhat simpler.

1.2 Technical Overview
Let L be a UP language and let R be the corresponding UP relation. By the proof of the
Cook-Levin theorem we may assume without loss of generality that R is computable in NC1

CCC 2018

22:6 Efficient Batch Verification for UP

(more specifically, by a CNF formula).6 Recall that our goal is to design a protocol, between
a prover Pbatch and verifier Vbatch that both get as input k instances x1, . . . , xk. The prover,
in addition, also gets witnesses w1, . . . , wk, each of length m, and needs to convince V that
x1, . . . , xk ∈ L.

For sake of simplicity, we will focus on constructing a protocol with small communication
O(kδ ·m1+δ) for some small constant δ > 0, and ignore the running time of the verifier.
Obtaining a verifier that runs in time that is sub-linear in k amounts to maintaining concise
descriptions of all the objects involved in the interaction. We ignore the verification time for
this overview.7

A Warmup: Batch Verification with
√

k ·m1+δ Communication. As a warmup, we first
consider a quantitatively easier task: batch verification with communication complexity√
k ·m1+δ (rather then our eventual goal of kδ ·m1+δ). This task is already non-trivial and

demonstrates most of our key ideas.
Consider an augmented UP relation R⊗k defined as:

R⊗k =
{(

(x1, . . . , xk), (w1, . . . , wk)
)

: ∀j ∈ [k], (xj , wj) ∈ R
}
.

Note that R⊗k is computable in NC1. By Theorem 2, R⊗k has an efficient IWV protocol.
Setting the parameter q of Theorem 2 to

√
k, we obtain an IWV protocol for R⊗k in which

the verifier reads
√
k bits of the witness w = (w1, . . . , wk) and with communication roughly√

k ·m1+δ (where recall that m = |w1| = ... = |wk| is the length of a single witness).
We would like for Pbatch and Vbatch to run this IWV. An immediate objection that

should arise is that in contrast to the IWV setting, we are now trying to construct a
standard interactive proof and so the verifier does not have access to the witness string
w = (w1, . . . , wk). To get around this, we will leverage a property of the IWV of Theorem 2.
Specifically, that IWV operates in two phases: an online phase followed by an offline phase.
First, in the online phase, the verifier does not have oracle access to the witness w, but is
allowed to communicate with the prover. The result of this interaction is a set of coordinates
Q of w that the verifier would like to read and a predicate φ to be applied to wQ. In
the second (offline) phase, the verifier is given oracle access to w but is no longer allowed
to interact with the prover. Rather, the verifier just reads wQ and accepts if and only if
φ(wQ) = 1. The soundness condition remains unchanged. Namely, for any alleged witness w
for a false statement, which is fixed prior to the interaction, with high probability over the
coins tossed in the online phase, either the verifier rejects or it generates Q and φ such that
φ(wQ) = 0.

The batch verification prover Pbatch and verifier Vbatch start by running the online phase
of the IWV for R⊗k on input (x1, . . . , xk). The prover Pbatch also uses w = (w1, . . . , wk) as
its witness string. Observe that for this online phase the verifier Vbatch does not need oracle
access to w (indeed, as discussed above, Vbatch has no such oracle access).

6 This step incurs a polynomial blowup in the witness size, which is the source of the poly(m) dependence
in Theorem 1. This blowup can be avoided for many natural UP relations which are natively checkable
in NC1 and more generally, for relations that are checkable by bounded space Turing machines or
bounded depth (logspace uniform) circuits.

7 One way getting an efficient verifier is to first construct a protocol with small communication but large
verification time (as will be described in this overview), and then further delegate the verification task
(which is a deterministic computation applied to the transcript of the interaction and the input) to the
prover using a doubly-efficient interactive proof such as those of [23] or [31]. However, in our actual
construction we show that the verifier can be implemented efficiently directly, without this additional
trick.

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:7

At the end of the this phase, Vbatch obtains a set Q ⊆ [k] × [m], of size |Q| ≤
√
k,

of points that it would like to read from w = (w1, . . . , wk) together with a predicate
φ : {0, 1}|Q| → {0, 1} to be evaluated on wQ. However, since Vbatch does not have oracle
access to w, it is not immediately clear how we can leverage the soundness condition of
IWVs in our current setting. Jumping ahead, we shall do so by using the uniqueness of the
witnesses in a crucial way.

Specifically, consider the fixed witness string ŵ = (ŵ1, . . . , ŵ1), where for every j ∈ [k]:
if xj ∈ L, then we set ŵj to be the corresponding unique witness, and otherwise (in case
xj 6∈ L) we set ŵj as an arbitrary fixed string (e.g., 0m). Since ŵ is an a priori fixed string,
by the soundness of the IWV, if there exists some j∗ such that xj∗ 6∈ L, then, no matter what
a cheating prover does, with high probability the IWV verifier generates φ and Q such that
φ(ŵQ) = 0 (or it rejects, which case Vbatch also rejects).

Suppose that indeed φ(ŵQ) = 0. While our verifier Vbatch does not have oracle access to
ŵ, since |Q| ≤

√
k, we can ask the prover Pbatch to send all of the witnesses belonging to

the subset S ⊆ [k] of witnesses that are “touched” by Q (i.e., S is the projection of the set
Q ⊆ [k]× [m] to its first coordinate). Denote the set of alleged witnesses that the prover sends
by w̃ = (w̃j)j∈S . Sending w̃ only costs us an additional |S| ·m = O(

√
k ·m) communication.

The verifier Vbatch checks that (xj , w̃j) ∈ R, for all j ∈ S, and that φ(w̃) = 1. To argue that
soundness holds, observe that if for some j ∈ S it holds that xj 6∈ L, then for any w̃j that a
potential cheating prover P∗batch might send, it holds that (xj , w̃j) 6∈ R and so Vbatch rejects.
On the other hand, since L ∈ UP, if xj ∈ L for all j ∈ S (which can certainly happen), the
prover P∗batch has to send the unique witnesses w̃ = ŵS (in order for these witnesses to satisfy
the relation R) in which case Vbatch rejects when checking that φ(w̃) = φ(ŵS) = 1. Thus, in
any case Vbatch rejects and soundness follows.

Taking a step back, our proof of soundness strongly leverages the uniqueness of the
witnesses to emulate query access to an a priori fixed witness by having the prover send the
relevant parts of the witness a posteriori (i.e., after the interactive phase of the IWV).

Observe that by our setting of parameters, the IWV part of the protocol uses
√
k ·m1+δ

communication, and actually sending the witnesses (ŵj)j∈S adds only an additional
√
k ·m

communication. Overall we obtain communication complexity
√
k ·m1+δ.

Batch Verification with kδ · m Communication. The main idea for obtaining smaller
communication kδ ·m1+δ, where δ > 0 is an arbitrary small constant, is to recursively apply
the solution for the warmup case (with slightly different parameters). We describe our
approach in detail next.

First, in contrast to the warmup case, we use the IWV of Theorem 2 with respect to
parameter q = k1−δ (rather than q =

√
k). Thus, we have an IWV for the relation Rk with

communication kδ ·m1+δ and query complexity k1−δ.
The prover Pbatch and Vbatch run the IWV as in the warmup. The main difference is that

now the set S of instances that are queried in the IWV is of size k1−δ and we cannot afford
for Pbatch to send (wj)j∈S explicitly to Vbatch. Rather, we observe that after running the
(online part of the) IWV what remains to be checked is that for every j ∈ S it holds that
xj ∈ L and that the corresponding (unique) witnesses (wj)j∈S satisfy φ((wj)j∈S).

Our approach is to check that these conditions hold by a recursive application of our
batch verification protocol on (xj)j∈S . Observe that the number of instances has shrunk
from k to k1−δ so we have made significant progress. Actually, batch verification per se
does not suffice since it only guarantees that xj ∈ L for every j ∈ S but does not guarantee
that φ((wj)j∈S). Still, we can obtain also the latter condition by using the fact that φ is
computable in NC1 and therefore can be incorporated into the augmented relation which is
defined for the next round.

CCC 2018

22:8 Efficient Batch Verification for UP

Thus, in each iteration of the recursion we shrink the number of instances by a kδ factor.
After ` = O(1/δ) iterations we will be left with a constant number of instances and the
prover Pbatch can send the corresponding witnesses explicitly. As in the warmup case, the
verifier checks that all these witnesses satisfy the base relation R individually and that they
jointly satisfy the predicate φ` generated by the last iteration of the recursion.

By our setting of parameter for the IWV, the communication complexity in each one of
the iterations is kδ ·m1+δ. At the final step the verifier sends O(1) witnesses in the clear
so that also adds at most O(m) communication. The prover can be implemented efficiently
(given the UP witnesses) since the underlying IWV has an efficient prover strategy. As
described above, the verifier’s running time might be as high as Ω(k ·m) (naively, that will
be complexity of the first iteration) but in the technical sections we provide a more refined
analysis that shows how to implement the verifier more efficiently.

1.2.1 Technical Comparison with [31]
As noted above, a less efficient UP batch verification protocol was presented in [31]. We
briefly review that approach and the differences from the current work. We refer the reader
to [31] and to Goldreich’s recent survey [18] for more details on the [31] protocol.

The high level idea in the [31] batch verification protocol is for the prover to generate PCP
proof strings for all the k instances and send a short “checksum” of these PCPs. The verifier
in turn, generates PCP queries and asks the prover to reveal the answer to these queries
for all k PCPs. The checksum is designed to guarantee that a cheating prover must either
answer these queries in a way that is consistent with predetermined PCPs, or alternatively,
it can send answers that are inconsistent with the correct PCPs of many of the statements.
For UP the correct PCPs are unique, and so the latter situation can be checked directly by
having the verifier specify a random subset of the PCP proofs for the prover to fully reveal
(also here, similarly to our protocol, recursion can be used to obtain improved parameters).

The current work completely avoids the use of checksums and PCPs. Instead, we use
IWVs to force a cheating prover to make false claim about a subset of the witnesses. IWVs,
together with the uniqueness of the witnesses, let us accomplish this without requiring the
verifier to make explicit queries to the witnesses. In terms of complexity, the key difference
is that in the [31] protocol, the prover must reveal the PCP answers for all the k instances.
This step adds Ω(k) to the communication complexity, which we avoid.

1.3 Additional Related Works
Doubly Efficient Interactive Proofs. Goldwasser, Kalai and Rothblum [23] introduced a
variant of interactive proofs, called doubly-efficient interactive proofs, in which both the
prover and the verifier are highly efficient. Namely, the honest prover must run in time
that is proportional to the complexity of the statement being proved, whereas the verifier
should be much faster than the complexity of the computation. Soundness is required to
hold against computationally unbounded provers.

Goldwasser et al. [23] construct such doubly efficient interactive proofs for every language
in (logspace-uniform) NC. The aforementioned recent work of Reingold et al. [31] gives such
proof-systems for languages computable in polynomial-time and some bounded polynomial
space. This includes in particular the complexity class SC. Moreover the latter protocol
only requires a constant number of rounds of interaction. We note that batch verification of
certain types of interactive proofs (that generalize UP batch verification) was a key ingredient
in the [31] result.

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:9

We remark that [23] and [31] doubly-efficient interactive proof-systems are for deterministic
computations and do not seem to immediately imply a protocol for batch NP, or even UP,
verification.

Batch Verification with Computational Soundness. A recent work of Brakerski, Holmgren
and Kalai [10] shows an argument-system for batch verification of NP statements. We
emphasize that they only obtain soundness against polynomial-time cheating provers whereas
we achieve statistical soundness against computationally unbounded provers. In addition, the
result of [10] relies on an unproven cryptographic assumption (specifically a computational
private information retrieval scheme) whereas our result is unconditional. On the other hand,
the protocol of [10] also offers significant advantages (some of which are likely to be infeasible
in the context of interactive proofs with statistical soundness). First, their result holds for any
NP language (rather than just UP). Second, their protocol requires only 2 messages whereas
our protocol requires a larger (but still constant) number of rounds. Lastly, under strong
enough assumptions, [10] achieve communication that depends only poly-logarithmically on
k, whereas our dependence is any arbitrarily small polynomial.

Interactive PCPs and PCIPs. Interactive PCPs, introduced by Kalai and Raz [27] are a
generalization of PCPs in which the PCP verifier can, in addition to reading bits of the
PCP, also interact with a prover. Our notion of IWV can be thought of as a restriction of
Interactive PCPs in which the PCP proof string is exactly the NP witness and cannot be
further encoded.

A generalization of interactive PCPs, called probabilistically checkable interactive proofs
(PCIPs) was recently introduced by Reingold et al. [31] and Ben Sasson et al. [8].8 Loosely
speaking, these are interactive proofs in which the verifier only reads few bits of each message.
Again, and in contrast to IWVs, the prover is allowed to send long messages of its choice
(e.g., a PCP encoding of the NP witness).

Interactive Proofs of Proximity (IPPs). As mentioned above, interactive proofs of prox-
imity (IPPs) form an important component in our UP batch verification protocol. IPPs
were introduced in [12, 32] and have seen a considerable amount of progress in recent years.
The latter work gives a general purpose sub-linear IPP protocol for general bounded depth
computations (which was extended to bounded space computations in [31]). A non-interactive
variant of IPPs was studied in [25, 14]. Highly efficient protocols for restricted classes of
computations (i.e., context free languages and small read-once branching programs) were
given in [19]. A study of a computational variant of IPPs was initiated in [28]. The latter
work also shows a lower bound for IPPs. As mentioned above, we use their proof technique
to derive a similar lower bound for IWVs. Gur and Rothblum [26] show a round hierarchy
for IPPs. Most recently, IPPs were considered in the context of zero-knowledge [9] and
distribution testing [11].

1.4 Open Questions
We conclude the introduction by mentioning two open questions on batch verification:
1. Do there exist interactive proofs for batch verification of arbitrary NP statements (rather

than just UP statements)? Ideally such a proof-system would be both constant-round
and have an efficient prover strategy, but even getting a result satisfying only one of these

8 Ben Sasson et al. refer to these as Interactive Oracle Proofs.

CCC 2018

22:10 Efficient Batch Verification for UP

two requirements would be very interesting. We mention that we do not know a way to
extend our UP batch verification to NP via the Valiant-Vazirani randomized reduction
from NP to UP [34].

2. The communication complexity in our protocol is proportional to kδ. Is it possible to
obtain a similar result with communication that grows only poly logarithmically with
k? (By [6], such a result would likely require a super constant number of rounds.) In
particular, a quantitative improvement to the interactive proof of proximity of [32] could
yield such a result.9

1.5 Organization
Section 2 contains definitions and notations. In Section 3 we formally define our notion
of interactive witness verification IWV, show that they exist for bounded NP relations and
demonstrate a lower bound on their complexity. In Section 4 we present our protocol for
batch verification of UP statements.

2 Preliminaries

Throughout this work we use NC1 to refer to the class of logspace uniform Boolean circuits
of logarithmic depth and constant fan-in. Namely, L ∈ NC1 if there exists a logspace
Turing machine M that on input 1n outputs a full description of a logarithmic depth circuit
C : {0, 1}n → {0, 1} such that for every x ∈ {0, 1}n it holds that C(x) = 1 if and only if
x ∈ L. We recall that the class SC refers to languages decidable by Turing machines that
run in polynomial-time and poly-logarithmic space.

We next define a notion of succinct representation of circuits. Loosely speaking, a
function f : {0, 1}n → {0, 1} has a succinct representation if there is a short string 〈f〉, of
poly-logarithmic length, that describes f . That is, 〈f〉 can be expanded to a full description
of f . The actual technical definition is slightly more involved and in particular requires that
the full description of f be an NC1 (i.e., logarithmic depth) circuit:

I Definition 3 (Succinct Description of Functions). We say that a function f : {0, 1}n → {0, 1}
of size s has a succinct description if there exists a string 〈f〉 of length polylog(n) and a
logspace Turing machine M (of constant size, independent of n) such that on input 1n, the
machine M outputs a full description of an NC1 circuit C such that for every x ∈ {0, 1}n it
holds that C(〈f〉 , x) = f(x). We refer to 〈f〉 as the succinct description of f .

We also define succinct representation for sets S ⊆ [k]. Roughly speaking this means that
the set can be described by a string of length polylog(k). The formal definition is somewhat
more involved:

I Definition 4 (Succinct Description of Sets). We say that a set S ⊆ [k] of size s has a
succinct description if there exists a string 〈S〉 of length polylog(k) and a logspace Turing
machine M such that on input 1k, the machine M outputs a full description of a depth
polylog(k) and size poly(s, log k) circuit (of constant fan-in) that on input 〈S〉 outputs all the
elements of S as a list (of length s · log(k)).

We emphasize that the size of the circuit that M outputs is proportional to the actual
size of the set S, rather than the universe size k.

9 By slightly adjusting our parameters we could obtain a batch verification protocol with communication
complexity ko(1) ·m1+o(1) (and a super constant number of rounds of interaction). Still, achieving
communication polylog(k) ·m seems beyond our current techniques.

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:11

2.1 Interactive Proofs
An interactive proof-system, as defined by Goldwasser, Micali and Rackoff [24], is a protocol
between a polynomial-time verifier V and a computationally unbounded prover P. The two
parties interact and at the end of the interaction the verifier accepts if and only if the given
computational statement is correct (with high probability).

We denote by (P,V)(x) the output of V after interacting with P on common input x. If
either V or P are given additional explicit inputs than we shall denote this by (P(y),V(z))(x)
which refers to the output of V after interacting with P where V gets as input (x, z) and
P gets as input (x, y). We extend the foregoing notation to implicit access to the input by
placing the implicit input as a superscript. Thus, by (P,Vz)(x) we refer to the output of V
after interacting with P , where V has oracle access to z and both parties have explicit access
to x.

I Definition 5. An interactive proof for a language L is an interactive protocol between a
polynomial-time verifier V and a computationally unbounded prover P. Both parties are
given as input a string x and must satisfy the following two properties:

Completeness: If x ∈ L, then

Pr[(P,V)(x) = 1] = 1.

Soundness: If x 6∈ L, then for every possible cheating strategy P∗,

Pr[(P∗,V)(x) = 1] ≤ 1/2.

If L ∈ NP, we say that an interactive proof for L has an efficient prover if the honest
prover strategy P can be implemented an polynomial-time given access to an NP witness.
I Remark (On Completeness and Soundness Errors). We note that Theorem 5 can be generalized
to allow for an error in the completeness condition. For simplicity however, and since our
protocols achieve perfect completeness, we avoid doing so.10 We also remark that the
soundness error (and completeness error, if ones allows for such) can be reduced at an
exponential rate by either sequential or parallel repetition (see, e.g., [17, Lemma C.1]).

2.1.1 Doubly Efficient Interactive Proofs
Doubly-efficient interactive proofs, introduced by Goldwasser et al. [23] are interactive proofs
in which the prover is relatively efficient (i.e., runs in time proportional to the complexity of
the computation), whereas the verifier is extremely efficient (i.e., running in almost linear
time). We shall use a recent result of Reingold et al. [31] giving such doubly efficient
interactive proofs for bounded space computations. The reason that we use the more recent
protocol of [31] rather than that of [23], is mainly because the former only requires a constant
number of rounds.

I Theorem 6 (Interactive Proofs for Bounded Space ([31])). Let T = T (n) and S = S(n)
such that n ≤ T ≤ exp(n) and log(T) ≤ S ≤ poly(n).

Let L ∈ DTISP(T, S) and let τ = τ(n) ∈ (0, 1/2) such that poly(1/τ) ≤ log(T). Then,
L has a public-coin interactive proof with perfect completeness and soundness error 1

2 .

10Fürer et al. [16] show how to transform any interactive proof to one having perfect completeness. Their
transformation however does not preserve the efficiency of the prover.

CCC 2018

22:12 Efficient Batch Verification for UP

The number of rounds is (1/τ)O(1/τ). The communication complexity is TO(τ) · poly(S).
The (prescribed) prover runs in time T 1+O(τ) · poly(S) time, and the verifier runs in time(
n · polylog(T) + TO(τ) · poly(S)

)
.

3 Interactive Witness Verification

For an NP relation R, we denote by R(x) the set of witnesses for x, namely R(x) = {w :
R(x,w) = 1}.

I Definition 7 (Interactive Witness Verification IWV). An Interactive Witness Verification
Protocol (IWV) for an NP relation R, is an interactive protocol between a computationally
unbounded prover P and a verifier V on a given input x. The verifier also has oracle access
to an alleged witness w. The protocol must satisfy the following two requirements:

Completeness: If (x,w) ∈ R then

Pr
[(
P,Vw

)
(x, |w|) = 1

]
= 1.

Soundness: If R(x) = ∅ (i.e., x is not in the underlying NP language), then for every a
priori fixed w∗ and every prover strategy P∗:

Pr
[(
P∗,Vw

∗)
(x, |w∗|) = 1

]
≤ 1/2.

The query complexity q = q(|x|, |w|) is the number of bits that V reads from w and the
communication complexity cc = cc(|x|, |w|) is the number of bits exchanged between V and
P in the protocol.

We say that the IWV has an efficient prover, if the honest prover strategy P can be
implemented in polynomial time, if the prover is given explicit access to w (i.e., the same
witness to which the verifier has oracle access).

Loosely speaking, we say that an IWV is oblivious if the verifier makes all its queries
non-adaptively at the end of the interaction. Put differently, at the end of the interaction the
verifier specifies some query set Q of bits from the witness, and a predicate φ and accepts if
and only if φ(wQ) = 1. For technical considerations in our proof, we actually require that
the verifier generate succinct descriptions of Q and φ (see Theorems 3 and 4 for the precise
technical definition of succinct descriptions of functions and sets). This allows the verifier to
run in time that is sublinear in the sizes of Q and φ. We proceed to the formal definition:

I Definition 8 (Oblivious IWV). An Oblivious IWV for an NP relation R with witness length
m, is an interactive protocol between a computationally unbounded prover P and a verifier
V on a given input x. At the end of the interaction either the verifier rejects or it outputs a
succinct description 〈Q〉 of a set Q ⊆ [m] of size q and succinct description 〈φ〉 of a predicate
φ : {0, 1}q → {0, 1} such that

Completeness: If (x,w) ∈ R then

Pr
[
V does not reject and φ(wQ) = 1

]
= 1.

Soundness: If R(x) = ∅ (i.e., x is not in the underlying NP language), then for every a
priori fixed w∗ and every prover strategy P∗:

Pr
[
V does not reject and φ(w∗Q) = 1

]
≤ 1/2.

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:13

The query complexity of an oblivious IWV is q, the size of the set Q, and the communication
complexity cc is the number of bits exchanged between V and P in the protocol.

We say that the IWV has an efficient prover, if the honest prover strategy P can be
implemented in polynomial time, if the prover is given explicit access to w (i.e., the same
witness to which the verifier has oracle access to).

We will rely on the following theorem, which is established in Section 3.1. Loosely
speaking, this result shows that any NP relation verifiable by small depth circuits has an
IWV in which we can trade off the query and communication complexities, such that their
product is roughly equal to the witness length. In particular, it yields IWV protocols for all
such NP relations in which the complexity scales with the square root of the witness length.

I Theorem 9. [IWVs for Bounded Space Relations] Let R be an NP relation with witness
length m = m(n), which can be verified in poly(n) time and space S = S(n). Then, for
every parameter q = q(n,m) and constant δ > 0, there exists a constant-round oblivious IWV
for R. The query complexity is q and the communication complexity is cc = cc(n,m) =(
(m/q) ·mδ · poly(S)

)
. The verifier runs in time

(
n · polylog(n,m) + Õ(cc)

)
. The prover

runs in time poly(n,m), given as input the NP witness.

We remark that a similar result holds for any language computable in (log-space uniform)
NC, where in the case of NC the number of rounds is polylog(n,m) rather than constant,
and the mδ terms in the communication complexity and the verifier runtime are replaced by
mo(1).

3.1 Constructing IWVs for NP
The main technical tool that we use to prove Theorem 9 is the interactive proofs of proximity
(IPPs) protocol of Rothblum, Vadhan and Wigderson [32]. First, in Section 3.1.1 we introduce
the model of IPPs and state the [32] result. Then, in Section 3.1.2, we prove Theorem 9.

3.1.1 Background on IPPs
Loosely speaking, IPPs are interactive proofs in which the verifier runs in sub-linear time in
the input length and is assured that the input is close to the language. Actually, we will
think of the input of the verifier as being composed of two parts: a short input x ∈ {0, 1}n
to which the verifier has direct access and a long input y ∈ {0, 1}m to which the verifier has
oracle access. The goal is for the verifier to run in time that is sub-linear in m and to verify
that y is far from any y′ such that the pair (x, y′) are in the language. Since such languages
are composed of input pairs, we refer to them as pair languages.

I Definition 10 (Interactive Proof of Proximity (IPP) [12, 32]). An interactive proof of proximity
(IPP) for the pair language L is an interactive protocol with two parties: a (computationally
unbounded) prover P and a computationally bounded verifier V. Both parties get as input
x ∈ {0, 1}n and a proximity parameter ε > 0. The verifier also gets oracle access to
y ∈ {0, 1}m whereas the prover has full access to y. At the end of the interaction, the
following two conditions are satisfied:

1. Completeness: For every pair (x, y) ∈ L, and proximity parameter ε > 0 it holds that

Pr
[(
P(y),Vy

)
(x, |y|, ε) = 1

]
= 1.

CCC 2018

22:14 Efficient Batch Verification for UP

2. Soundness: For every ε > 0, x ∈ {0, 1}n and y that is ε-far from the set {y′ : (x, y′) ∈ L},
and for every computationally unbounded (cheating) prover P∗ it holds that

Pr
[(
P∗(y),Vy

)
(x, |y|, ε) = 1

]
≤ 1/2.

An IPP for L is said to have query complexity q = q(n,m, ε) if, for every ε > 0 and
(x, y) ∈ L, the verifier V makes at most q(|x|, |y|, ε) queries to y when interacting with P.
The IPP is said to have communication complexity cc = cc(n,m, ε) if, for every ε > 0 and pair
(x, y) ∈ L, the communication between V and P consists of at most cc(|x|, |y|, ε) bits.

We are now ready to state the main result of [32]. Actually we will use an extension, due
to [31], of the [32] IPP.11

I Theorem 11 (IPPs for Bounded Space Computations, [32, 31]). Let L be a pair language
that is computable in poly(n,m) time and space S = S(n,m). For every constant δ > 0, there
is an IPP for L with the following parameters. For every input pair (x, y) ∈ {0, 1}n×{0, 1}m,
the query complexity is q = q(n,m, ε) = (1/ε) · mO(δ), the communication complexity is
cc = cc(n,m, ε) = (ε ·m1+O(δ) · poly(S)), and the number of rounds is constant. The honest
prover runs in time poly(n,m, 1/ε) and the verifier runs in time n · polylog(n,m) + Õ(q+ cc).

Furthermore, the verification can be implemented in two phases. In the communication
phase the verifier interacts with the prover without querying y. The verifier’s running time in
this phase is n · polylog(n,m) + Õ(cc). At the end of the communication phase, the verifier
either rejects or it outputs a succinct description 〈Q〉 of a set Q ⊆ [m] of size q and succinct
description 〈φ〉 of a predicate φ : {0, 1}q → {0, 1} which can be computed by a (logspace
uniform) NC1 circuit of size Õ(q). In the query phase, the verifier only queries yQ and
accepts if and only if φ(yQ) = 1.

3.1.2 Proof of Theorem 9
Let R be an NP relation with witness length m = m(n), which can be verified in poly(n)
time and space S = S(n). Let δ > 0 be a constant and let q = q(n,m) ∈ [m] be a parameter.

View R as a pair language. Namely each input-witness pair (x,w) is viewed as a an input
pair (x,w) for the pair language. Let (P,V) by the IPP for R guaranteed by Theorem 11
with respect to proximity parameter ε = mO(δ)

q . We claim that (P,V) is an IWV for R, where
queries to the IPP input oracle y are emulated by querying the IWV witness oracle.

Completeness follows immediately from the completeness of the IPP. For soundness,
let x ∈ {0, 1}n such that R(x) = ∅. Fix an alleged witness string ỹ and an IWV prover
strategy P∗. We view P∗ as a cheating prover strategy for the IPP (P,V) with respect to
the input pair (x, ỹ). Since R(x) = ∅, it holds that (x, ỹ) is at infinite distance from the set
{y′ : (x, y′) ∈ R} (in particular the distance is more than ε). Thus, by the IPP soundness,
the verifier rejects with probability at least 1/2.

The fact that the foregoing IWV is oblivious, as well as its complexity, follows from the
furthermore part of Theorem 11.

3.2 Lower Bound for IWVs
In this section we show a lower bound on the efficiency of IWVs that, loosely speaking, shows
that Theorem 9 is tight. This lower bound relies on the existence of an exponentially strong

11The [31] IPP extends the [32] result from bounded depth computations to also hold for bounded space
computations. Also, and more importantly for our purposes, the [31] IPP only requires a constant
number of rounds (for languages computable in bounded space).

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:15

cryptographic pseudorandom generator (PRG). By exponentially strong, we mean that the
output of the generators, when evaluated of a random string of length m, computationally
indistinguishable from a uniformly random string even for adversaries running in time
2m/100 · poly(m). We remark that by assuming only sub-exponential hardness (i.e., hardness
against 2mε time adversaries) we can still obtain a meaningful (albeit weaker) lower bound.

For an NP relation R, we denote by R⊗k the relation

R⊗k
def=
{(

(x1, . . . , xk), (w1, . . . , wk)
)

: ∀j ∈ [k], (xj , wj) ∈ R and |x1| = . . . = |xk|
}
.

I Theorem 12. Assume the existence of an exponentially hard cryptographic PRG. Then,
there exists an NP relation R with witnesses of size m, such that for every k ≤ poly(m),
every IWV for R⊗k must have either query complexity q = Ω(k) or communication complexity
cc = Ω(m). Furthermore, if the PRG is injective, then R is a UP relation.

The proof of Theorem 12 follows in a straightforward way from the IPP lower bound of
Kalai and Rothblum [28]. We provide a proof sketch below.

Proof Sketch. Let G : {0, 1}m → {0, 1}n be an exponentially strong PRG. Let RG =
{(y, s) : y = G(s)}. Clearly RG ∈ NP and if G is injective, then RG ∈ UP. Suppose toward a
contradiction that there exists an IWV (P,V) for R⊗kG =

{(
(y1, . . . , yk), (s1, . . . , sk) : ∀j ∈

[k], yj = G(sj)
}
with query complexity k/100 and communication complexity m/100.

The proof is composed of two steps. First, we use (P,V) to construct a relatively efficient
interactive proof for RG (i.e., with communication m/100). The second step is to show that
such an interactive proof violates the exponential hardness of G.

We start with the first step: constructing an interactive proof (P ′,V ′) for RG - i.e.,
deciding whether a given string is in the image of G. Actually, we only achieve a relaxed
notion of interactive proof. Specifically we have the following two relaxations:

(Average-case Completeness:) Completeness holds for most inputs in the language but not
necessarily for all inputs. Namely, for most s, the verifier V ′ accepts with high probability
after interacting with the prover P ′ on common input G(s).
(Common Random String:) Both the prover and verifier have access to a (relatively long)
common random string. We do not count this random string as part of the communication
complexity of the protocol.

We proceed to describe the interactive proof (P ′,V ′) for R⊗kG . The common random
string consists of

(
(s1, . . . , sk), i

)
∈R ({0, 1}m)k × [k]. We define yj = G(sj), for all j ∈ [k].

In addition to the common random string, the verifier V ′ and prover P ′ are given as input
y ∈ {0, 1}n, and V ′ needs to decide whether there exists s ∈ {0, 1}m such that G(s) = y (i.e.,
whether RG(y) =6= ∅).

The interactive proof proceeds as follows. The prover P ′ and verifier V ′ run the IWV
(P,V) where the input is (y1, . . . , yi−1, y, yi+1, . . . , yk) and the witness, to which V only gets
oracle access, is (s1, . . . , si−1, 0m, si+1, . . . , sk).

To show that average-case completeness holds, let s ∈R {0, 1}m and consider the execution
of (P ′,V ′) on input y = G(s). Consider a mental experiment in which we run the IWV with
the witness (s1, . . . , si−1, s, si+1, . . . , sk) (rather than (s1, . . . , si−1, 0m, si+1, . . . , sk) as in the
real execution). By the completeness of the IWV, in this mental experiment, V accepts.

Observe that, conditioned on not querying s, the view of V is identical in the real execution
and in the mental experiment, and so it will accept also in the real execution. Moreover,
since i and y are random, and V makes at most k/100 queries, with constant probability, V
does not query s and average-case completeness follows.

CCC 2018

22:16 Efficient Batch Verification for UP

Soundness of (P ′,V) is easier to show. Specifically, if RG(y) = ∅ then R⊗kG
(
y1, . . . , yi−1, y,

yi+1, . . . , y`
)

= ∅ and so by the soundness of the IWV, the verifier V rejects with high proba-
bility given oracle access to any fixed witness (in particular, (s1, . . . , si−1, 0m, si+1, . . . , sk))
and no matter what the cheating prover does.

Thus, (P ′,V ′) is an interactive proof for RG. Observe that (P ′,V ′) has the same commu-
nication as (P,V) - namely, m/100.

The second step of the proof is to observe that the foregoing interactive proof can be
emulated by an algorithm A running in time 2m/100 · poly(m, k). This is similar to the proof
that IP ⊆ PSPACE (i.e., interactive proofs can be emulated by bounded space machines).12
Thus, using the fact that k = poly(m), the PRG can be broken in time 2m/100 · poly(m) time,
in contradiction to our assumption. J

4 Batch Verification for UP

For an NP relation R, we denote by R⊗k the relation

R⊗k
def=
{(

(x1, . . . , xk), (w1, . . . , wk)
)

: ∀j ∈ [k], (xj , wj) ∈ R and |x1| = . . . = |xk|
}
.

I Theorem 13 (Batch Verification for UP). Let R be a UP relation that is verifiable in
NC1, with witnesses of length m = m(n) such that m and n are polynomially related. Let
k = k(n) ≥ 1 and let δ > 0 be a constant. There exists a constant-round interactive proof
system for R⊗k such that the verifier runs in time

(
Õ(n · k) + kδ ·m1+δ), the (honest) prover

runs in time poly(n,m, k) and the communication complexity is
(
kδ ·m1+δ).

By the proof of the Cook-Levin theorem every UP language has a UP relation that is
verifiable in NC1 (albeit with a polynomial blowup in the witness size). Thus, Theorem 13 is
applicable to any UP language.

As described in the technical overview (see Section 1.2), our batch verification protocol
works in iterations, where the goal of each iteration is to significantly reduce the number
of instances that are still “alive”. In Section 4.1 we describe the iterative step and then in
Section 4.2 we describe the UP batch verification protocol.

4.1 The Iterative Step
We first describe the main step in our proof, corresponding to a single iteration of the protocol
that was described in Section 1.2. Loosely speaking, this step shows an interactive protocol,
where if we start with a false claim about a subset of the k UP statements, then at the end
of the protocol, with high probability, we will have a false claim about a smaller subset of
the statements.

This step, which appears next in Theorem 14, is where we rely on the existence of IWVs
for general NC1 relations. Theorem 14 can be instantiated with any such IWV. Later, in
Section 4.2, we will use Theorem 14 instantiated with the IWVs that were shown to exist
(unconditionally) in Theorem 9.

I Lemma 14. Suppose that for every parameter q, every NP relation computable in NC1

has an oblivious IWV with an efficient prover such that with respect to inputs of size n and
witness of size m, the proof-system has soundness error ε = ε(n,m, q), verifier complexity

12We cannot afford to count the CRS as part of the communication of the interactive proof, since it is of
length m · k + log(k)� m/100. Rather, observe that A can simply sample the CRS directly, in time
poly(m, k) (rather than enumerating over all possible CRS strings).

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:17

Vtime = Vtime(n,m, q), prover complexity Ptime(n,m, q) (assuming the prover is given
access to the NP witness), round complexity r(n,m, q), query complexity q and communication
complexity cc = cc(n,m, q).

Let R be a UP relation computable in NC1, with witnesses of length m = m(n), and let
δ > 0 be a constant. There exists an interactive protocol between a prover P and verifier V
such that the following holds. Both parties get as input x = (x1, . . . , xk) ∈ ({0, 1}n)k and
succinct descriptions 〈S〉 and 〈φ〉, of a set S ⊆ [k] of size s and circuit φ, respectively. The
prover P also gets witnesses w = (w1, . . . , wk) ∈ ({0, 1}m)k as an additional input. The
two parties interact and at the end of the interaction V either rejects or outputs succinct
descriptions 〈S′〉 and 〈φ′〉 of a subset S′ ⊆ S, of size s1−δ, and circuit φ′, respectively, such
that:

(Completeness:) If (xj , wj) ∈ R for all j ∈ S, and φ(w|S) = 1, then, with probability
1, after interacting with P, the verifier V outputs 〈S′〉 and 〈φ′〉 such that φ′(w|S′) = 1.
(Soundness:) If either (1) there exists j ∈ S such that R(xj) = ∅, or (2) (xj , wj) ∈ R
for all j ∈ S but φ(w|S) = 0, then, for every prover strategy P∗, with probability 1− ε,
after interacting with P∗, the verifier V either rejects or outputs 〈S′〉 and 〈φ′〉 such that
one of the following holds:
1. ∃j ∈ S′ such that R(xj) = ∅; or
2. φ′(w|S′) = 0.
(Complexity:) The protocol (P,V) has verifier complexity Vtime

(
n·k+poly(logn, log k),

s ·m, q
)
, prover complexity Ptime

(
n ·k+poly(logn, log k), s ·m, q

)
(assuming the prover is

given access to the k UP witnesses), round complexity r = r
(
n·k+poly(logn, log k), s·m, q

)
and communication complexity cc = cc

(
n · k + poly(logn, log k), s ·m, q

)
, where q = s1−δ.

Proof. Let R be a UP relation computable in NC1. We consider a related NP relation Rk
defined as follows. The input to Rk is (x1, . . . , xk, 〈S〉 , 〈φ〉) and the witness is a sequence
w|S = (wj)j∈S . The relation checks that (1) for every j ∈ S it holds that (xj , wj) ∈ R, and
(2) that φ(w|S) = 1. Observe that membership in Rk can be decided in (logspace uniform)
NC1, and therefore, by the lemma’s hypothesis there exists an oblivious IWV (P,V) for Rk
where we use parameter q = s1−δ, where s is the size of the set S.

We use (P,V) to construct a protocol (Pk,Vk) as required in the theorem’s statement.
Given as common input (x1, . . . , xk, 〈S〉 , 〈φ〉), the verifier Vk and prover Pk run (P,V) with
respect to the common input (x1, . . . , xk, 〈S〉 , 〈φ〉), where Pk gets as an auxiliary input also
w|S = (wj)|j∈S .

If V rejects then Vk immediately rejects. Otherwise, V outputs succinct NC1 descriptions
〈Q′〉 and 〈φ′〉 where Q′ ⊆ [k]× [m], of size k1−δ specifies which locations to read from w|S
and φ′ is a predicate specifying whether V would have accepted had it read those bits. For
simplicity, and without loss of generality, we assume that Q specifies k1−δ of the witnesses
w1, . . . , wk entirely and ignores the rest. Let S′ ⊆ [k] denote the witnesses that the Q refers
to. The verifier Vk outputs 〈S′〉 and 〈φ′〉.

Completeness. Let x1, . . . , xk be a sequence of inputs, S ⊆ [k] a set and φ a circuit such
that there exist unique w|S = (wj)|j∈S such that (xj , wj) ∈ R for all j ∈ [k] and φ(w|S) = 1.
The IWV protocol is run with respect to an input

(
(x1, . . . , xk, 〈S〉 , 〈φ〉),wS

)
∈ Rk. Thus,

by the completeness of the IWV, with probability 1, it holds that φ′(wS′) = 1.

Soundness. Suppose that either there exists j ∈ S such that R(xj) = ∅, or w|S = (wj)j∈S
consists of the corresponding unique witnesses and 〈φ〉 is such that φ(w|S) = 0. Let P∗ be a
cheating prover strategy. To show that the soundness condition holds, it suffices to prove the
following claim:

CCC 2018

22:18 Efficient Batch Verification for UP

I Claim 14.1.

Pr
[(
∀j ∈ S′, R(xj) 6= ∅

)
and

(
φ′(w|S′) = 0

)]
≤ ε

Proof. For every j ∈ S, if R(xj) 6= ∅ then define ŵj = wj (i.e., the unique witness for xj),
whereas if R(xj) = ∅, then define ŵj as some arbitrary fixed string (e.g., 0m).

We view P∗ as an adversary for the oblivious IWV protocol, with respect to the a priori
fixed witness string ŵ|S = (ŵj)|j∈S . By the soundness condition of the oblivious IWV (see
Theorem 8), it holds that:

Pr[φ′(ŵS′) = 1] ≤ ε.

For all j ∈ S we have that, if R(xj) 6= ∅ then wj = ŵj . Thus,

Pr
[(
∀j ∈ S′, R(xj) 6= ∅

)
and

(
φ′(w|S′) = 0

)]
≤ Pr

[
φ′(ŵ|S′) = 0

)]
≤ ε,

and the claim follows. J

Complexity. The stated complexity follows from the complexity of the IWV, which is run
on an input of size n · k + poly(logn, log k) (the concatenation of the k inputs and succinct
representations 〈S〉 and 〈φ〉), witness size s ·m (i.e., the length of (wi)|i∈S - the concatenation
of the relevant witnesses) and with respect to the parameter q = s1−δ. J

4.2 The Batch Verification Protocol: Proof of Theorem 13

Let (Preduction, Vreduction) be the protocol guaranteed by Theorem 14, with respect to UP
relation R and the IWV protocol of Theorem 9. We construct a protocol (Pbatch,Vbatch)
satisfying the requirement of Theorem 13. The protocol is described in Fig. 1.

To complete the proof of Theorem 13 we need to show that completeness and soundness
hold, as well as analyze the complexity of the protocol.

Completeness. Let x1, . . . , xk such that there exist (unique) witnesses w = (w1, . . . , wk)
such that (xj , wj) ∈ R, for every j ∈ [k]. Let S1, . . . , S` and φ1, . . . , φ` be the sets and
formulas, respectively, generated in the interaction between Pbatch and Vbatch.

I Claim 14.2. For every i ∈ [`], with probability 1, it holds that Vbatch does not reject prior
to the ith iteration and φi(wSi) = 1.

Proof. We prove by induction on i. In the case base φ1 always outputs 1 and so the claim
holds trivially. Suppose that the claim holds for some value i. Thus, φi(wSi) = 1.

Since (xj , wj) ∈ R for all j ∈ Si, and φi(wSi) = 1, by the completeness of (Preduction,

Vreduction)) it holds that Vreduction does not reject and outputs 〈Si+1〉 and 〈φi+1〉 such that
φi+1(wSi+1) = 1. The claim follows. J

Thus, at the end of the loop φ`(wS`) = 1. Since Pbatch sends the correct (unique) witnesses
wS` in Step 3, by the completeness of the interactive proof-system of Theorem 6, the verifier
Vbatch accepts.

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:19

The UP Batching Protocol (Pbatch,Vbatch)

Common Input: x = (x1, . . . , xk) ∈ ({0, 1}n)k.
Prover’s Auxiliary Input: witnesses w = (w1, . . . , wk) ∈ ({0, 1}m)k.

1. Set 〈S1〉 to be a concise description of the set S1 = [k], and 〈φ1〉 to be a concise description of
a circuit φ1 : ({0, 1}m)k → {0, 1} that always outputs 1.

2. For i = 1, . . . , `− 1, where ` = O(1/δ):
a. Run (Preduction,Vreduction) on common input (x, 〈Si〉 , 〈φi〉), and with respect to parameter

qi = s1−δ
i , where si is the size of the set Si, and with soundness error ε = 1/(10`).a More

specifically, Vbatch emulates Vreduction and Pbatch emulates Preduction, using w|Si as the auxiliary
input.

b. If Vreduction rejects then Vbatch immediately rejects. Otherwise Vreduction outputs 〈Si+1〉 and
〈φi+1〉.

3. Pbatch sends to Vbatch the witnesses w|S` = (wj)j∈S` .
4. The verifier Vbatch expands 〈S`〉 to a full description of the set S`. The prover and verifier then

run the doubly efficient interactive proof of Theorem 6 on input
(
(xj)j∈S` , (wj)j∈S` , 〈φ`〉

)
checking that for every j ∈ S` it holds that (xj , wj) ∈ R and that φ`(w|S`) = 1 (the protocol of
Theorem 6 is used with a sufficiently small parameter τ > 0 to be determined in the analysis).
If all checks pass then Vbatch accepts and otherwise it rejects.b

a Such soundness amplification can be achieved by repeating the base protocol O(log(`)) times in
parallel.

b This step could be replaced by having the verifier directly check by itself that (xj , wj) ∈ R for every
j ∈ S`. However, doing so introduces an additive overhead of poly(n,m) to the verifier’s running
time (arising from the complexity of the relation R) which we can reduce to Õ(n+m) by using the
interactive proof of Theorem 6.

Figure 1 UP Batching.

Soundness. Let x1, . . . , xk ∈ {0, 1}n such that ∃j∗ ∈ [k] with R(xj∗) = ∅. Let P∗ be a
cheating prover strategy. For every j ∈ [k], if R(xj) 6= ∅, let wj be the corresponding unique
witness. Purely for notational convenience, we also define wj to be an arbitrary string, for
every j ∈ [k] such that R(xj) = ∅. Let w = (w1, . . . , wk).

For every i ∈ [`], let Ei denote the conjunction of the following three events:
The verifier Vbatch has not rejected prior to the start of the ith iteration; and
For every j ∈ Si it holds that R(xj) 6= ∅; and
φi(w|Si) = 1

Setting ε = 1/(10`), we have the following central claim:

I Claim 14.3. For every i ∈ [`]:

Pr[Ei] ≤ (i− 1) · ε

Proof. We prove the claim by induction on i. For the base case i = 1, since R(xj∗) = ∅ and
j∗ ∈ [k] = S1, it holds that

Pr[E1] ≤ Pr
[
∀j ∈ S1, R(xj) 6= ∅

]
≤ Pr[R(xj∗) 6= ∅] = 0.

Assume that the claim holds for some i ∈ [`− 1]. By elementary probability theory,

Pr[Ei+1] ≤ Pr[Ei] + Pr
[
Ei+1|¬Ei

]
.

CCC 2018

22:20 Efficient Batch Verification for UP

By the induction hypothesis the first term is bounded by (i− 1) · ε and so to complete
the proof we need to bound the second term by ε. This holds since:

Pr[Ei+1 | ¬Ei] ≤ Pr
[
Ei+1 | Vbatch rejects prior to iteration i

]
+ Pr

Ei+1

∣∣∣∣∣
(
∃j ∈ Si s.t. R(xj) = ∅

)
or(

φi(w|Si) = 0
)


= Pr

Ei+1

∣∣∣∣∣
(
∃j ∈ Si s.t. R(xj) = ∅

)
or(

φi(w|Si) = 0
)


≤ ε,

where the equality is since if Vbatch rejects prior to iteration i then clearly it also rejects
prior to iteration i+ 1 (and so Ei+1 does not occur), and the last inequality follows directly
from the soundness condition of Theorem 14 (where recall that we used that protocol with
soundness error ε = 1/(10`)). J

Thus, with probability at least 1− ` · ε ≥ 0.9, one of the following events occurs at the
end of the loop:
1. Vbatch has already rejected; or
2. There exists j ∈ [S`] such that R(xj) = ∅; or
3. φ`(w|S`) = 0.

We show that in each of these cases, the verifier rejects with high probability. For the
first case this is immediate. In the second case, the cheating prover must send some incorrect
witness w∗j . Thus, the verifier and prover run the doubly efficient interactive proof-system of
Theorem 6 on a false input, and by the soundness condition of that protocol, the verifier
rejects with probability 0.9.

Lastly, if φ`(wS`) = 0, then either P∗ sends witnesses that are not the unique witnesses,
in which case again the protocol of Theorem 6 is run on a false statement or P∗ sends the
unique witnesses but in this case the statement is still false since φ`(w|S`) = 1. Thus, in
both cases, by the soundness of Theorem 6, the verifier rejects with probability 0.9.

Thus, in all cases the verifier rejects with probability at least 0.92 ≥ 1/2.

Complexity. For every i ∈ [`], let si denote the size of the set Si generated in the interaction.
By Theorem 14 it holds that si ≤ k1−(i−1)·δ.

Consider the ith iteration of the loop, for some i ∈ [`− 1]. Let ni = n · k + polylog(n, k)
and mi = si ·m ≤ k1−(i−1)·δ ·m and recall that we set qi = s1−δ

i ≤ k1−i·δ. By Theorem 9,
together with Theorem 14, the ith iteration takes a constant number of rounds and has:

Communication complexity:

cci = (mi/qi) ·mδ
i · polylog(n,m)

≤
(

(k1−(i−1)·δ ·m)/k1−i·δ
)
· (k ·m)δ · polylog(n,m)

= k2δ ·m1+δ · polylog(n,m)

Verifier running time:

Vtimei = ni · polylog(ni,mi) + Õ(cci)
≤ n · k · polylog(n, k,m) + k2δ ·m1+δ · polylog(n,m, k)

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:21

And prover running time (given the UP witnesses):

Ptimei = poly(ni,mi)
= poly(n,m, k)

To analyze the last two steps of the protocol, first observe that s` (i.e., the size of the final
set S`) has size s` ≤ k1−(`−1)δ̇ = O(1). Thus, Step 3 only adds an additional s` ·m = O(m)
communication.

As for the verification time, generating the set S` takes time poly(s`, log k) = polylog(k)
(by the definition of concise description of sets, see Theorem 4). The protocol of Theorem 6,
is run on a logspace computation and with its parameter τ set to be a sufficiently small
constant so that the communication is O(m). This protocol takes an additional O(1) rounds,
the verifier runs in time Õ(n+m), the prover runs in time poly(n,m) and the communication
complexity is O(m).

The parameters stated in the theorem’s statement now follows by taking resetting δ to be
sufficiently small (e.g., take δ′ = δ/4) and the fact that m and n are polynomially related.

References
1 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
doi:10.1145/278298.278306.

2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
doi:10.1145/278298.278306.

3 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new characteri-
zation of NP. In 33rd Annual Symposium on Foundations of Computer Science, Pitts-
burgh, Pennsylvania, USA, 24-27 October 1992, pages 2–13. IEEE Computer Society, 1992.
doi:10.1109/SFCS.1992.267824.

4 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA, pages 21–31. ACM, 1991. doi:10.1145/103418.103428.

5 László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3–40, 1991. doi:10.1007/
BF01200056.

6 László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988. doi:10.1016/
0022-0000(88)90028-1.

7 Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive
proofs: How to remove intractability assumptions. In Janos Simon, editor, Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, pages 113–131. ACM, 1988. doi:10.1145/62212.62223.

8 Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. Cryp-
tology ePrint Archive, Report 2016/116, 2016. http://eprint.iacr.org/.

9 Itay Berman, Ron D. Rothblum, and Vinod Vaikuntanathan. Zero-knowledge proofs of
proximity. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs,
pages 19:1–19:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/
LIPIcs.ITCS.2018.19.

CCC 2018

http://dx.doi.org/10.1145/278298.278306
http://dx.doi.org/10.1145/278298.278306
http://dx.doi.org/10.1109/SFCS.1992.267824
http://dx.doi.org/10.1145/103418.103428
http://dx.doi.org/10.1007/BF01200056
http://dx.doi.org/10.1007/BF01200056
http://dx.doi.org/10.1016/0022-0000(88)90028-1
http://dx.doi.org/10.1016/0022-0000(88)90028-1
http://dx.doi.org/10.1145/62212.62223
http://eprint.iacr.org/
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.19
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.19

22:22 Efficient Batch Verification for UP

10 Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation
and batch NP verification from standard computational assumptions. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 474–482. ACM, 2017. doi:10.1145/3055399.3055497.

11 Alessandro Chiesa and Tom Gur. Proofs of proximity for distribution testing. In Anna R.
Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 53:1–53:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ITCS.2018.53.

12 Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically check-
able proofs. Inf. Comput., 189(2):135–159, 2004. doi:10.1016/j.ic.2003.09.005.

13 Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996. doi:
10.1145/226643.226652.

14 Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Partial tests, universal tests
and decomposability. In Moni Naor, editor, Innovations in Theoretical Computer Sci-
ence, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages 483–500. ACM, 2014.
doi:10.1145/2554797.2554841.

15 Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interac-
tive protocols. Theor. Comput. Sci., 134(2):545–557, 1994. doi:10.1016/0304-3975(94)
90251-8.

16 Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos. On
completeness and soundness in interactive proof systems. Advances in Computing Research,
5:429–442, 1989.

17 Oded Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness, vol-
ume 17 of Algorithms and Combinatorics. Springer-Verlag, 1999.

18 Oded Goldreich. Overview of the doubly-efficient interactive proof systems of RRR. Elec-
tronic Colloquium on Computational Complexity (ECCC), 24:102, 2017. URL: https:
//eccc.weizmann.ac.il/report/2017/102.

19 Oded Goldreich, Tom Gur, and Ron D. Rothblum. Proofs of proximity for context-free lan-
guages and read-once branching programs - (extended abstract). In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-
10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages
666–677. Springer, 2015. doi:10.1007/978-3-662-47672-7_54.

20 Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett., 67(4):205–214, 1998. doi:10.1016/S0020-0190(98)
00116-1.

21 Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991. doi:10.1145/116825.116852.

22 Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with
a laconic prover. Computational Complexity, 11(1-2):1–53, 2002. doi:10.1007/
s00037-002-0169-0.

23 Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In Cynthia Dwork, editor, Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-
20, 2008, pages 113–122. ACM, 2008. doi:10.1145/1374376.1374396.

24 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof systems. SIAM J. Comput., 18(1):186–208, 1989. doi:10.1137/0218012.

http://dx.doi.org/10.1145/3055399.3055497
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.53
http://dx.doi.org/10.1016/j.ic.2003.09.005
http://dx.doi.org/10.1145/226643.226652
http://dx.doi.org/10.1145/226643.226652
http://dx.doi.org/10.1145/2554797.2554841
http://dx.doi.org/10.1016/0304-3975(94)90251-8
http://dx.doi.org/10.1016/0304-3975(94)90251-8
https://eccc.weizmann.ac.il/report/2017/102
https://eccc.weizmann.ac.il/report/2017/102
http://dx.doi.org/10.1007/978-3-662-47672-7_54
http://dx.doi.org/10.1016/S0020-0190(98)00116-1
http://dx.doi.org/10.1016/S0020-0190(98)00116-1
http://dx.doi.org/10.1145/116825.116852
http://dx.doi.org/10.1007/s00037-002-0169-0
http://dx.doi.org/10.1007/s00037-002-0169-0
http://dx.doi.org/10.1145/1374376.1374396
http://dx.doi.org/10.1137/0218012

O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:23

25 Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In Tim Roughgarden,
editor, Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science,
ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 133–142. ACM, 2015. doi:10.
1145/2688073.2688079.

26 Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of proximity.
In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs,
pages 39:1–39:43. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/
LIPIcs.ITCS.2017.39.

27 Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Shai Halevi,
editor, Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677
of Lecture Notes in Computer Science, pages 143–159. Springer, 2009. doi:10.1007/
978-3-642-03356-8_9.

28 Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity - [extended abstract].
In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part II, volume 9216 of Lecture Notes in Computer Science, pages 422–442.
Springer, 2015. doi:10.1007/978-3-662-48000-7_21.

29 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992. doi:10.1145/146585.146605.

30 Omer Reingold, Guy N. Rothblum, and Ron Rothblum. Efficient batch verification for
UP. Electronic Colloquium on Computational Complexity (ECCC), 25:22, 2018. URL:
https://eccc.weizmann.ac.il/report/2018/022.

31 Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interac-
tive proofs for delegating computation. In Daniel Wichs and Yishay Mansour, edi-
tors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 49–62. ACM, 2016.
doi:10.1145/2897518.2897652.

32 Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 793–802. ACM, 2013. doi:10.1145/2488608.2488709.

33 Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992. doi:10.1145/146585.146609.
34 L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical

Computer Science, 47:85–93, 1986.

CCC 2018

http://dx.doi.org/10.1145/2688073.2688079
http://dx.doi.org/10.1145/2688073.2688079
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.39
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.39
http://dx.doi.org/10.1007/978-3-642-03356-8_9
http://dx.doi.org/10.1007/978-3-642-03356-8_9
http://dx.doi.org/10.1007/978-3-662-48000-7_21
http://dx.doi.org/10.1145/146585.146605
https://eccc.weizmann.ac.il/report/2018/022
http://dx.doi.org/10.1145/2897518.2897652
http://dx.doi.org/10.1145/2488608.2488709
http://dx.doi.org/10.1145/146585.146609

	Introduction
	Our Results
	Interactive Witness Verification

	Technical Overview
	Technical Comparison with [31]

	Additional Related Works
	Open Questions
	Organization

	Preliminaries
	Interactive Proofs
	Doubly Efficient Interactive Proofs

	Interactive Witness Verification
	Constructing IWVs for NP
	Background on IPPs
	Proof of Theorem 9

	Lower Bound for IWVs

	Batch Verification for UP
	The Iterative Step
	The Batch Verification Protocol: Proof of Theorem 13

