12 research outputs found

    Influence of injection conditions on field tracer experiments

    Full text link
    Calibration of ground water transport models is often performed using results of field tracer experiments. However, little attention is usually paid to the influence, on resulting breakthrough curves, of injection conditions and well-aquifer interactions, more particularly of the influence of the possible trapping of the tracer in the injection wellbore. Recently, a new mathematical and numerical approach has been developed to model injection conditions and well-aquifer interactions in a very accurate way. Using an analytical solution derived from this model, a detailed analysis is made of the evolution of the tracer input function in the aquifer. By varying injection conditions from one simulation to another, synthetic breakthrough curves are generated with the SUFT3D ground water flow and transport finite-element simulator. These tests show clearly that the shape of the breakthrough curves can be dramatically affected by injection conditions. Using generated breakthrough curves as "actual" field results, a calibration of hydrodispersive parameters is performed, neglecting the influence of injection conditions. This shows that neglecting the influence of actual injection conditions can lead to (1) errors on fitted parameters and (2) misleading identification of the active transport processes. Conclusions and guidelines are drawn in terms of proposed methodologies for better controlling the tracer injection in the field, in order to minimize risk of misinterpretation of results

    A Numerical Model of Tracer Transport in a Non-isothermal Two-Phase Flow System for CO2 Geological Storage Characterization

    Get PDF
    For the purpose of characterizing geologically stored  CO2\text{ CO}_{2} including its phase partitioning and migration in deep saline formations, different types of tracers are being developed. Such tracers can be injected with  CO2\text{ CO}_{2} or water, and their partitioning and/or reactive transfer from one phase to another can give information on the interactions between the two fluid phases and the development of their interfacial area. Kinetic rock–water interactions and geochemical reactions during two-phase flow of  CO2\text{ CO}_{2} and brine have been incorporated in numerical simulators (e.g., Xu et al., TOUGHREACT User’s Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media. LBNL Report 55460, V.1.2., Berkeley, CA, 2004). However, chemical equilibrium between the fluid phases is typically assumed, and multi-component, multiphase, non-isothermal codes for  CO2\text{ CO}_{2}–brine systems that incorporate kinetic mass transfer of tracers between the two fluid phases are not readily available. New models or further developments of existing models are therefore needed to provide the capability for interpreting the signals of novel tracers, including tracers with kinetic/time-dependent interface transfer. This paper presents such new numerical model of tracer transport in a non-isothermal two-phase flow system. The model consists of five different governing equations describing liquid phase (aqueous) flow, gas ( CO2)\text{ CO}_{2}) flow, heat transport and the movement of the tracers within the two phases, as well as allowing kinetic transport of the tracers between the two phases. A finite element method is adopted for the spatial discretization and a finite difference approach is used for temporal discretization. Some special technologies and solution strategies are adopted for increasing the convergence, ensuring the numerical stability and eliminating non-physical oscillations. The new numerical model is validated against the code TOUGH2/ECO2N as well as some analytical/semi-analytical solutions. Good agreement between the simulated and analytical results indicates that the model has capability to simulate two-phase flow and tracer transport in a non-isothermal two-phase flow system with high confidence. Finally, the capability to model transport and kinetic mass transfer of tracers between the two fluid phases is demonstrated through examples.peerReviewe

    Characterisation of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modelling

    No full text
    Sea-water intrusion is actively contaminating fresh groundwater reserves in the coastal aquifers of the Pioneer Valley,north-eastern Australia. A three-dimensional sea-water intrusion model has been developed using the MODHMS code to explore regional-scale processes and to aid assessment of management strategies for the system. A sea-water intrusion potential map, produced through analyses of the hydrochemistry, hydrology and hydrogeology, offsets model limitations by providing an alternative appraisal of susceptibility. Sea-water intrusion in the Pioneer Valley is not in equilibrium, and a potential exists for further landward shifts in the extent of saline groundwater. The model required consideration of tidal over-height (the additional hydraulic head at the coast produced by the action of tides), with over-height values in the range 0.5-0.9 m giving improved water-table predictions. The effect of the initial water-table condition dominated the sensitivity of the model to changes in the coastal hydraulic boundary condition. Several salination processes are probably occurring in the Pioneer Valley, rather than just simple landward sea-water advancement from modern sources of marine salts. The method of vertical discretisation (i.e. model-layer subdivision) was shown to introduce some errors in the prediction of watertable behaviour
    corecore