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ABSTRACT

Finite element analyses were carried out to assess the possible effects’
of the Stripa mine openings on the in situ stress measured in a 400-m-deep
borehole drilled from the surface. For this assessment, four 2-dimensional
cases were modeled. These cases variously included two horizontal sections,
and two separate, idealized vertical sections. An iron ore body in the
mine was assumed to be completely extracted, thereby providing conservative

estimates of stress concentration effects.

Since no in situ stress measurements were made before mining, overburden
weight and horizontal stresses measured by hydrofracturing were assumed to
be the pre-mining state of stress. The stress state resulting from excavation
of the mine was calculated by the finite element model. In the cases using
horizontal sections, the model predicted a stress concentration factor at the
borehole of approximately 1.15, which is negligible considering the difficulty
of obtaining accurate stress measurements. For the vertical sections the
model predicted higher stress concentration factors at depths less than 200 m.
This was expected because the vertical sections chosen brought the borehole
unrealistically close to the mine openings, thereby leading to overly con-

servative estimates.

In general, deviations in fhe magnitudes and orientations of the calcu-~
lated redistributed principal stresses from the assumed pre-mining state of
stress were found to be comparable to 'the scatter of overcoring data. It is,
therefore, recommended that, for near-field stress calculations, the vertical

stress due to overburden weight and the horizontal stresses measured by
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hydrofracturing at the borehole he considered the unperturbed far-field in

situ state of stress.



1.0 INTRODUCTION
1.1 Background and Objective

! Over the past three years,thermomechanical, hidrological, and other
: investigations have been conducted at a decth of approximately 340 m in a
granite* body adjacent to a depleted iron ore mine at Stripa, Sweden
(Witherspoon et al., 1981), to see if such bodies can be used as nuclear
waste repositories. The present work is the first part of a project to
exhaustively analyze the thermomechanical data cbtained from the in situ

heater test.

In the heater tests, eler*rical heaters were placed in drill-holes in
the f.oor of specially excavated expei-imental drifts (tunnels) to simulate
the thermal energy res:iting from the decay of radioactive wastes. Temper-
atures, displacements, and stresses were measured in the rcck. This report
focuses on stresses. Since the thermomechanical lcading was aoplied after
the .rock had been perturbed by removal of a large portion of the ore body,
by the excavation nf the experimental drifts, and by the driiling of hore-
holes, the instantaneous state of stress at a point in the rock during
the heater tests was a result of the following {chronologically ordered)
camponents: (i) ihe pre-mining, pre-excavation stress, {ii) the mining-
induced stress, {iii) the stresses induced by drift excavation and borehole
drilling, and {iv) the thermally induced stress. Of these, the first three
components were present before heating, and only stress changes, i.e.,
component {iv) above, were measured during the experiments (see Schrauf
et s1., 1979, for details of instrumentation).

*The term "granite" is used loosely here. The rock type is 2 "quartz monzo-
nite" or “monzagranite." See Olkiewirz et al. (1979) for mineral composition.




If the rock is linear elastic, i.e., its properties are independent of
stress, then the thermally induced stresses can be calculated from the known
system geometry, from the thermal field obtained in a separate calculation,
and from the rock properties measured under room conditions. That was, indeed,
the approach taken in the preliminary calculations (Chan and Cook, 1979).
Comparison with field data showed that there were significant discrepancies.
Subsequently, limited laboratory data became available on the temperature and
stress dependence of the mechanical and thermomechanical properties of Striva
grarite, and finite element analyses were carried out incorporating temperature-
dependent properties (Chan, Hood and Bcard, 1980; Chan, Littlestone and Wan,

1980). The results were encouraging.

To incorporate stress-dependent properties into a numerical model
correctly, it is necessary to know the spatial distribution of the absolute
stress. Since stress measurements are invasive, it is clearly impossible to
measure the absolute stress at every point., A reasonable approach is to
measure the pre-mining, pre-excavation state of stress at a number of points
and obtain the spatial distribution of the mining and excavation induced
stress changes by numerical modeling. Since the experimental site was near
an existing mine, the in situ stress measurements should be made as far away
from the underground openings as possible. Other considerations (to be
discussed in the next subsection}, however, have made it necessary to measure
the in situ stress in a borehole drilled from the surface at a distance which
may not be completely outside the zone of influence of the mining-induced
stress concentration. The purpose of this work was to determine, by numerical
modeling, whether the measured in situ stress, which is actually a combination

of components (i), (ii), and {iii} above, differs significantly from the



pre-mining, pre-excavation stress. If the differences are large, further
work would have to be done to estimate the true pre-mining, pre-excavation

stress.

1.2 Location, Geometry and Geologic Structure

In situ stress measurements were made (Doe et al., 1981) in a verti-
cal hole labeled SBH-4, about 300 m north of the underground test site, as
illustrated in the sub-til] surface map (Fig. 1). There are three major
types of rock, namely, leptite (a Precambrian metavolcanic sediment), the
iron ore, &nd granite. The iron ore, which has largely been removed, lies in
the leptite formation. The underground test site, where thermomechanical and
hydrological tests were conducted, lies entirely in granite at the test
level (about 340 m Jepth) although the surface projection of the test site
falls outside of the outcrop of the granitic pluton. The location for the
stress measurement borehole was a compromise between two conflicting criteria:
(i) the borehole should be as far away as possible from the mine openings, and

(i1} it should lie in the same granitic pluton as the underground test site.

The almost entirely mined-out iron ore deposits, indicated by the dark
areas in Fig. 1, strike approximately northeast. The surface outcrop of
this ore body is about 700 m from SBH-4, at its nearest point. However, as
shown in the 3-D drawing of Fig. 2{a), the envelope of the mine workings
slopes and spreads out in such a way that, at its closes point -~ the 360 m

level -~ it is less than 400 m from SBH-4,

1.3 Scope of Present Study

Two methods were used to measure in situ stress in SBH-4, hydrofractur-

ing and overcoring {Doe et al., 1981). Hydrofracturing gives the secondary
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principal stresses in the horizontal plane. Overcoring measures the full
three-dimensiona® stress tensor. Measurements were made with each method at
a variety of depths down to about 400 m. There was considerable scatter,

particularly in the overcoring measurements,

Because the overcoring measurements are basically ooint measurements,
whereas hydrofracturing gives the mean stress over the area of the fracture,
the hydrofracturing measurements were primarily used in this study. Only the
overcoring measurements, however, can indicate if the mining excavation

affected the orientation of the principal stresses in 3-D space.

The present study focuses on the far-field state of stress. This allowed
us to simplify calculations by ignoring the effect of the drifts excavated
for the underground experiments, especially since these drifts are much
smailer than the old mine openings. Hereafter, therefore, the term "excavation”

will refer exclusively to mining excavations.

In view of the extremely comolicated geometry of the mine openings
and the uncertainties in rock mass properties, it was impractical to model
the 3-D configuration at this stage. Therefore, as a first step, approximate
2-D finite element models of horizontal and vertical sections were used. In
these models the ore body was assumed to be completely extracted, oroviding
upper-bound estimates of ary stress concentration that might have affected
the in situ stress measurements. The results of 2-D analyses should indicate
whether 3-D modeling would be necessary. Figure 2{(b) illustrates one ideali-
zation of the mine openings superimposed upon a 3-0 drawing of the actual

openings.



It should be emphasized that ab initio calculation of in situ stress
is impossible. The stress concentration factor (SCF) is used to quantify
the effect of the excavation on the in situ stress. This factor is the ratio
of the stress at any point after an excavation to the stress before excavation
at the same point. With the linear rock properties assumed in these models,
the SCF is affected by the relative, but not the absolute, magnitudes of

the pre-excavation stress components.

The effect of mining was studied by assuming that the pre-mining verti-
cal stress was determined by the weight of the overburden, a reasanable
assumption. A linear fit from the hydrofracture data was used for the assumed
horizontal stress. The effect of the mining excavations was then modeled. A
calculated SCF close to 1.0 would suggest that these assumptions are
reasonahle; a value much different from 1.0 would suggest a need to modify

them.



2.0 NUMERICAL MODELING

In calculating the in situ state of stress in an elastic rock medium
with a mine opering, one can either (i) include the initial (pre-mining
stress directly in the finite element formulation and then create the opening,
or (ii) apply equivalent boundary loads to the medium in which the opening
already exists. The finite element implementation of these two options is
briefly reviewed in Section 2.1. Both methods were used in the present
study. The general assumptions, geometric idealization, loading and boundary
conditions, and material properties employed in the analysis of the Stripa

stituation are presented in Section 2.2

2.1 Methods for Including Initial Stress in Finite Element Analysis

The instantaneous stress in an elastic body can be expressed as:

e=Dle-g)tg » (1)
where

¢ = finstantaneous stress (vector),

D elasticity matrtix,

¢ = finstantaneous strain (vector),

& * initial strain (vector),

g = initial stress (vector).

The finite element formulation of the problem of equilibrium (Zienkiewicz,

1977) leads to the eguation:

Ka+f =r, (2)

*Although stress is a tensor quantity, it is expedient to arrange the
stress components in the form of a column vector.



where é = system stiffness matrix,
a = nodal displacement vector,
f = distributed (body or surface) force vector,
r = external concentrated nodal force vector.

The force vector, f, is given by

cav+ [ 8o v, (@

Jvae [ora-feo &
V= A~ V- T o v ~— o
where

BT = transpose of shape function matrix,
b = body force vector,
t = boundary traction,
gT = transpose of strajn-disp]acement matrix (see below),
V = system volume,
A = surface enclosing V,

The matrix B relates the finite element approximation of the strain, ¢, to
the nodal displacements; thus:

e~ £ = Ba. (4)

Solution of Eq. (2) yields the nodal displacements from which stress can be

calculated using Eqs. (4) and (1).

2.1.1 Direct Inclusion of Initial Stress

The general method for including initial stress in finite element

analysis is by implementing the full sets of Eqs. (1) - (4) above. This
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formulation is valid for both linear and nonlinear elasticity, provided that,
in the latter case, the various quantities in the equations are interpreted

as incremental guantities or, alternatively, an iterative pracedure is used.
For a highly nonlinear rock, the excavation sequence can be simulated by
sequantial removal of the elements representing the excavation. This procedure

is now considered standard. The interested reader should consult Zienkiewicz

(1977) for details.

2.1.2 Boundary Loading

For linear elasticity, in the absence of other causes of initial strain,

one has the initial condition

(5)

e

a €
-0 -0
Equation {1) then reduces to:

E (1)

g =

e

while Eq. (3) reduces to:

f=-Jbav- S tan. (3")
Vo A

The combined initial and excavation-induced stresses can be obtained by
solving Eq. (2) in conjunction with Eqs. (1') and (3') with an appropriate
boundary condition to simulate the initial (pre-mining) stress, Sy

In practice, this can be effected by either (i) applying negative traction to
the excavation boundary (Chan, 1979) or (ii) assuming the excavation boundary
to be stress free and applying boundary loads to the external boundary of the

system (see Section 2.2.2).
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Simulation of initial stress by boundary loading is not quite correct
since this would deform the rock even in the absence of any opening. If
the point of interest is sufficiently far away from the boundary, however,

the error introduced would be small by virture of St. Venant's principle.

2.2. Calculations

Calculations were undertaken for the horizontal and vertical sections
shown in Figs. 3 and 4, respectively. In the analysis of the horizontal
sections, the 176 m and 360 m levels were selected because the mined-out
area is largest at the former level and nearest to the SBH-4 borehole at
the latter. In situ stresses measured at SBH-4 were expected to deviate
from the pre-mining state by the greatest amount at either of these two

levels.

Vertical sections of mine openings shown in Fig. 4 are those intersected
by profiles 14, 67, 42, and 100M (Fig. 2), which are normal to the strike
of the ore body. This orientation was chosen because theoretical solutions
for stress distribution about ellipsoidal cavities (Sadowsky and Sternberg,
1949) had demonstrated that the zone of influence about 3-D openings is more
nearly proportional to the radius of the shortest dimension of the opening
than to the longest. The chosen orientation allows the shortest possible
opening dimension so that the size of the zone of influence as well as the
magnitude of stress redistributed by the mine opening will not be unrealistically

overestimated.

General assumptions made in the analyses were that (i) the entire
ore body had been removed and (ii) all openings were infinitely long. The

second assumption permitted the problems to be reduced to two dimensions.
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direction = SW to NE.
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This approach is conservative and should yield results indicating the maximum

possible alterations of initial stresses due to mining.

2.2.1 Geometrical Idealizations

Geometrical idealizations of the mined-out areas in Figs. 3 and 4 are

shown in Figs. 5 and 6, respectively.

In the analysis of the vertical sections, two differunt geometrical
approximations were adopted: a single rectangle and two parallel rectargles
as shown in Fig. A, The single rectangle circumscribes profiles of ali the
mine openings while the double rectangles more accurately represent the geo-

metrical characteristics of the profiles of the mined-out ore body.

2,2.2 Lloading and Boundary Conditions

Loading conditions for all cases in this report were based on results
from hydraulic fracturing experiments in SBH-4 (Doe et al., 1981). The mean
orientation of the maximum horizontal stress is indicated by the experimental

results to be N 65° W (Fig. 7}.

The vertical stress component was assumed to be due totally to lithostatic
stress. On the pasis of the value of Stripa granite density given by Swan
(1978) (density = 2622 kg/m3), the distribution of vertical stress as a

function of depth z (positive downwards) was found to be:

o, = 257212 (Pa) . (6)*

*The Targe numbers ¢t digits in Egs. (A) and (7) are given to facilitate
numerical evaluation and should not be taken as an indication of the accu-
racy of the data.
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Applying regression analysis on the hydraulic fracturing experimental data

(Doe et al., 1981), the distributions of maximum horizontal stress, Yhmax?

and minimum horizontal stress, are found to be:

“Hmin

a
"

, 108 (10.03724 + 0.038801 2) (Pa) ,
max
and

o, = 10°(1.69304 + 0.029868 z) (Pa) ,
min

0 < z < 400m . (7)*

The validity of the foregoing expressions is limited to the depth range
of 0 to 400 m over which in situ stress was measured. Beyond the depth of
400 m, the relationship between the average horizontal stress and the vertical
stress is assumed to lie within the global lower and upper bounds given by

Hoek and Brown (1978). This relationship is depicted in Fig, 8.

For the depth range over which they were measured, the relationship be-

tween the stresses is given by:

average horizontal stress

K vertical stress
264/z + 1.39 0 < z < 400 m (8)
573/z + 0.61 z 2> 400m

In the analyses of the horizontal sections, the maximum and minimum
horizontal stresses at the 176 m and 360 m levels were calculated using Eq.
(7). These secondary principal stresses in the horizontal plane were assumed
to represent initial principal stresses that existed prior to any mining

activity. Since the reference axes for the calculations coincided with the
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Hoek and Brown (1978); solid curve represents
values adopted for present work.
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north and east orientations of the mine coordinate system, the principal
stress components had to be resolved in relation to these reference axes.
The resolved components of stress are shown in Figs. 9, 10, and 11; boundary
conditions are also included. (Note that Figs. 9, 10, and 11 correspond to

the discretizations in Figs. 14, 16(a), and 16(b), respectively.)

In the analyses of the vertical profiles, the horizontal stress components
vere found by rotating the principal stress components given by Egs. (6) -
(8) to the plane of the model. Boundary and Toaaing conditions are shown in
Figs. 12 and 13. (Conditions in Figs. 12 and 13 correspond to discretizations

in Figs. 18(a) and 18(b), respectively.)

2.2.3 Material Properties

In the analyses, the rock was assumed to be an isotropic, linear elastic

continuum with the following materia! properties:

Young's modulus, E = 51.3 GPa
Poisson's ratio, v = 0.23

Rock density, p = 2622 kg/m3.

These properties are for intact core specimens of Stripa granite, as

given by Pratt et al. {1977) for E and v, and Swan {1978) for o.

For a 2-D jsotropic, linear elastic medium the calculated stress concen-
tration factor due to openings is, of course, independent of the elastic
properties {Savin, 1961). 1n a 3-D solid the stress concentration factor

will depend on Poisson's ratio (Sadowsky and Sternberg, 1949).
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3.0 RESULTS AND DISCUSSION

In this section, results are presented and discussed for (i) a test
case with a relatively coarse 2-D mesh using two different methods for a
consistency check of the computational techniques and (ii} four cases involv-
ing two horizontal and two vertical sections using finer 2-D meshes to

simulate the field situation at Stripa.

3.1 Comparison of Two Loading Conditions

Sensitivity of stress distribution to changes in the two loading condi-
tions--direct application of in situ stresses and the application of boundary
forces, as discussed in Section 2.1--was investigated first. For this
purpose, a configuration corresponding to the horizontal section at the 360 m

level was employed.

The spatial discretization, comprising 308 nodes and 208 linear isopara-
metric quadrilateral elements, is displayed in Fig. 14. The two loading
cases are show in Fig. Y. Stress distributions resulting from the loading
conditions are shown in Fig. 15, from which one may conclude that they are

almost identical.

Similar resuits, not shown in this report, were observed in stress
distributions from the two loading cases in one of the vertical sections.
On the basis of the evidence shown in Fig. 15, it may be inferred that
consistent stress distributions can be calculated with either of the loading

conditions tested, as expected from theory.

Since it is more expedient with available computer pragrams to employ

the boundary loadinrg technique, this approach was adopted in the actuatl

stress analyses.
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3.2 Horizontal Sections

Discretizations of the horizontal sections at the 176 m and 360 m
levels are displayed in Fig. 16; the internal openings represent excavated
ore bodies. Details of discretizations are given in Table 1. Boundary and

leading conditions are given in Figs. 10 and 11.

Calculated redistributed stress patterns at the 176 m and 360 m levels
are shown in Fig. 17. A comparison between the initial stress with the
redistributed stresses indicates that significant redistribution is confined
to areas close to the openings. (In both 17(a) and 17(b), cross-like points
far from the openings represent the magnitudes and orientations of the

jnitial stresses.)

The calculation of stress concentration factors in terms of normal
stress components at the location of SBH-4 is shown in Table 2, The results,
which are very similar for the two sections, indicate that the presence of the

mine openings has altered the in situ stress by 15% or less.

3.3 Vertical Sections

The finite element meshes of the vertical sections, where the mine
openings were approximated by a single rectangle and by two rectangles, are
displayed in Fig. 18. Details of discretization are given in Table 1.

Boundary and loading conditions are shown in Figs. 12 and 13.
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Table 1. Discretization details.

Section No. of Nodes No. of Elements [1lustration
176 = 768 724 fig. 16 (a)
360 m H 656 615 Fig. 16 (b)
Single rectangle V 661 600 Fig. 18 (a)
Double rectangle V 806 723 Fig. 18 (b)

Note: H -- Horizontal
V -- Vertical

Table 2.

Normal stresses and stress concentration factors at SBH-4,
horizontal sections.

R R

a [
level g, (WPa)  of (Wa) SCF = ai— o (WPa) & (MPa) SCF = =
76 m 13.60 15.10 111 10.21 8.72 0.85
360 m 20.29 21:94 1.09 16.22 14.51 0.89

Note: In labeling the stress components, positive y-axis corresponds to
the mine-east direction and positive x-axis corresponds to the mine-north

direction.

(Soe

o, are normal stresses deduced from hydrofracture measurements
¥t al., 1981).

Superscript R refers to redistributed stresses.

SCF =

stress concentration factor.
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Fig. 18(a). Finite element mesh for the vertical
section with single rectangular opening.
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Fig. 18(b). Finite element mesh for the vertical
section with double rectangular opening.
Rock_e1ements are put back between the
openings.
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Patterns of calculated redistributed stress are displayed in Fig. 19.
Significant stress changes occurred from the ground surface down to about
200 m. Furthermore, the patterns of redistributed stresses outside the

openings are practically independent of the number of rectangular openings.

From an inspection of plots of stress concentration factor (SCF) vs.
depth given in Fig. 20, one can infer that at depths greater than 200 m the
alteration of initial stresses is no more than 25%. At less than 200 m it is
apparent that SCF increases fairly rapidly as the depth becomes shallower.

This is discussed in the next section.

In the numerical models the reasonable assumption was made that the
pre-mining principal stresses were vertical and horizontal. A comparison of
the overcoring measuremnt with the calculated redistributed stresses was made
(Fig. 21) to study whether the inclined angles of the overcoring principal
stresses are consistent with this modeling assumption. Unfortunately, the

scatter of the overcoring measurements obscures iiic answer to this gquestion.

3.4 Discussion

The basic objective of the analyses was to estimate the effects ¢f
mining upon the redistribution of in situ stresses. The analyses were
carried out via a series of two-dimensional approximations. Such approxima-
tions are quite conservative (in that they yield the upper bounds of changes
in initial stress) because in two-dimensional projection the excavated areas
anpear to be closer to the BH-4 hole than they are in reality (see Figs. 1

and 2). This is particularly true for the vertical sections.
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(a) Single Rectangle Model (b) Double Rectangle Model
6 -
r

Overcoring Measurements,
Horizontal Stress
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Vertical Stress
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{_©O { 1
100 200 300 ago
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XBL 816-3251

Fig. 20. Plots of stress concentration factors {(calculated redis-
tributed stress/initial stress) for horizontal and
vertical stress components on the vertical plane at the
SBH-4 hole vs. depth from ground surface. For compari-
son, the measured stresses from overcoring have been
divided by the assumed pre-mining in situ stresses.
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Calculated Redistributed Stress
from model in fig. G{b)

Depth (m) Initial Stress Horz. and Vert. Prircipal Overcoring
Assumed in todels Come:unents Stresses Measurement
0
100 |
200 l
300 \
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!
0 20 an  NPa
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Fig. 21. Comparison of initial stress, calculated redistributed stress,
and overcoring data.
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The closest actual approach of the mining excavation to the SBH-4
borehole is about 350 m, at a depth of about 360 m; it is about 700 m from it
at the surface. In the vertical models, the excavation is about 100 m from
SBH-4 at a depth of 100 m. It is therefore not surprising that the calculated
redistributed stresses for the vertical sections are much higher than the

measured stresses close to the surface,

The zalculation of in situ stress from field experiments, by either
the overcoring or the hydraulic fracturing method, is always based on simpli-
fying assumptions about the rock mass -- that it is, for example, homo-
geneous, intact, isotropic, and linear elastic. Such assumptions are usually
not satisfied by field conditions. Results ocbtained from these tests are
therefore always associated with errors due ta field uncertainties. It is
also possible that the in situ stress actually varies rapidly from point to
point. The large scatter of the measurements (Fig. 21) provides some indica-
tion of the magnitude of these uncertainties. The measuremant errors are
1ikely to be largest near to the surface where, due to lower in situ stresses,

more apen fractures are likely.

These near-surface measurement errors and uncertainties in the vertical
cases make it difficult to judge whether the large stress concentration
factors at shallow depths reaily represent the in situ condition. These
results, however, are of little concern because the underground experimental

areas, the main region of interest, is below 300 m.

Results from the analyses of the horizontal sections indicate that
the maximum change in the in situ stress is about 15%; in the vertical

seci:ons at deptns greater tham 200 m, it is about 25%. These changes are
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relatively small compared with the uncertainties in the measured stress.
Likewise, the calculated changes in stress orientation for the horizental
sections and for the vertical sections below a depth of 200 m are comparable

with the scatter of the overcoring measurements.
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4.0 CONCLUSIONS

On the basis of the present study, the following conclusions may be
drawn: (1) At depths between 200 m and 400 m,‘encompassing the underground
test horizon, the mining-induced stress concentrations are relatively insig-
nificant when the uncertainties in the in situ stress measurements are
considered; (ii) differences between orientations of principal stresses from
finite element modeling using vertical sections and those from overcoring
measurements are comparable with the variations among different overcoring
measurements at approximately the same depth; (iii) further elaboration of
the numerical modeling of far-field stress appears unwarranted; and (iv) for
the purpose of near-field ir situ stress calculations, the vertical stress
due to overburden weight, along with horizontal stresses measured by hydro-

fracturing at SBH-4, can be taken as the inital, pre-mining far-field stress.
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APPENDIX: CONTOUR PLOTS OF STRESS CONCENTRATION FACTORS

This appendix consists of a set of contour plots of the stress concen-
tration factors, defined as the ratio of the horizontal (¢ vertical) compa-
nent of calculated redistributed stress in the presence of the mine openings(s)
to the corresponding component of assumed pre-mining stress. ATl four finite

element models reported in the main text are illustrated.
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Stress concentration factor contours, vertical section, one

Fig. Al(b). t
. rectangular opening-vertical stress component.
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Fig. A2(a).
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Stress concentration factor contours, vertical sectiun, two
rectangular openings - horizontal stress component.
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Fig. A2(b). Stress concentration factor contours, vertical section, two

rectangular openings - vertical stress component.
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Fig. A3(a).
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Stress concentration factor contours,
horizontal section 176 m level - E-W
stress component.
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Fig. A3(b).

A3 ()

STRESS CONCENTRATION FACTOR CONTOUR PLOTTING LIMITS

RORIZONTAL SECTIOR I 3.00
-0

K-S COMPONENT L
THTERVAL 0.2

1

@

SBH-4

(AERERRREAREE RS

/]

INFSRE REAUNNRNE . UNEARIUES|

2ee. 402. 6ea. Ban.

1220. 1208.
8L 616-3258
HORTZONTAL DISTANCE (M)

Stress concentration factor contours,
horizontal section 176 m level - N-S
stress component.
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Stress concentration factor contours,
horizontal section, 340 m level -
N-S stress component.
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Fig. Ad(a).
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Stress concentration factor contours,

horizontal section, 340 m level -
E-W stress component.
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