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ABSTRACT 
Finite element analyses were carried out to assess the possible effects 

of the Strlpa mine openings on the in situ stress measured 1n a 400-m-deep 
borehole drilled from the surface. For this assessment, four 2-dimensional 
cases were modeled. These cases variously included two horizontal sections, 
and two separate, idealized vertical sections. An iron ore body in the 
mint was assumed to be completely extracted, thereby providinq conservative 
estimates of stress concentration effects. 

Since no in situ stress measurements were made before raining, overburden 
weight and horizontal stresses measured by hydrofracturing were assumed to 
be the pre-mining state of stress. The stress state resulting from excavation 
of the mine was calculated by the finite element model. In the cases using 
horizontal sections, the model predicted a stress concentration factor at the 
borehole of approximately 1.15, which is negligible considering the difficulty 
of obtaining accurate stress measurements. For the vertical sections the 
model predicted higher stress concentration factors at depths less than 200 m. 
This was expected because the vertical sections chosen brought the borehole 
unrealistically close to the mine openings, thereby leading to overly con­
servative estimates. 

In general, deviations in the magnitudes and orientations of the calcu­
lated redistributed principal stresses from the assumed pre-mininq state of 
stress were found to be comparable to the scatter of overcoring data. It is, 
therefore, recommended that, for near-field stress calculations, the vertical 
stress due to overburden weight and the horizontal stresses measured by 
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hydrofracturing at the borehole be considsred the unperturbed far-field in 
situ state of stress. 
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1.0 INTRODUCTION 
1.1 background and Objective 

Over the past three years.thermomechanical, h;.vro1oqical, and other 
investigations have been conducted at a death of approximately 340 m in a 
granite* body adjacent to a depleted iron ore mine at Stripa, Sweden 
(Witherspoon et al., 1981), to see if such bodies can be used as nuclear 
waste repositories. The present work is the first part of a project to 
exhaustively analyze the thecmomechanical data obtained from the in situ 
heater test. 

In the heater tests, elertrical heaters were Dlaced in drill-holes in 
the f;oor of specially excavated experimental drifts (tunnels) to simulate 
the thermal energy resulting from the decay of radioactive wastes. Temper­
atures, displacements, and stresses were measured in the reck. This report 
focuses on stresses. Since the thermomechanical loading was aoolied after 
the rock had been perturbed by removal of a large portion of the ore body, 
by the excavation of the experimental drifts, and by the drilling of bore­
holes, the instantaneous state of stress at a point in the rock durinq 
the heater tests was a result of the following (chronologically ordered) 
components: (i) i.h« pre-mining, pre-excavation stress, (ii) the mining-
induced stress, (iii) the stresses induced by drift excavation and borehole 
drilling, and (iv) the thermally induced stress. Of these, the first three 
components were present before heating, and only stress chanqes, i.e., 
component (iv) above, were measured during the experiments (see Schrauf 
et si., 1979, for details of instrumentation). 

*The term "granite" is used loosely here. The rock type is a "quartz monzo-
nite" or "monzogranite." See Olkiewicz et al. (1979) for mineral composition. 
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If the rock is linear elastic, i.e., its properties are independent of 
stress, then the thermally induced stresses can be calculated from the known 
system geometry, from the thermal field obtained in a separate calculation, 
and from the rock properties measured under room conditions. That was, indeed, 
the approach taken in the preliminary calculations (Chan and Cook, 1979). 
Comparison with field data showed that there were significant discrepancies. 
Subsequently, limited laboratory data became available on the temperature and 
stress dependence of the mechanical and thermomechanical properties of Strioa 
granite, and finite element analyses were carried out incorporatinq temperature-
dependent properties (Chan, Hood and Board, 1980; Chan, Littlestone and Wan, 
1980). The results were encouraginq. 

To incorporate stress-dependent properties into a numerical model 
correctly, it is necessary to know the spatial distribution of the absolute 
stress. Since stress measurements are invasive, it is clearly impossible to 
measure the absolute stress at every point. A reasonable approach is to 
measure the pre-mining, pre-excavation state of stress at a number o* points 
and obtain the spatial distribution of the mininq and excavation induced 
stress changes by numerical modeling. Since the experimental site was near 
an existing mine, the in situ stress measurements should be made as far away 
from the underground openings as possible. Other considerations (to be 
discussed in the next subsection), however, have made it necessary to measure 
the in situ stress in a borehole drilled from the surface at a distance which 
may not be completely outside the zone of influence of the mining-induced 
stress concentration. The purpose of this work was to determine, by numerical 
modeling, whether the measured in situ stress, which is actually a combination 
of components (i), (ii), and (iii) above, differs significantly from the 
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pre-mining, pre-excavation stress. I f the differences are large, further 

work would have to be done to estimate the true pre-mining, pre-excavation 

stress. 

1.2 Location, Geometry and Geologic Structure 

In s i tu stress measurements were made (Doe et a l . , 1981) in a v e r t i ­

cal hole labeled SBH-4, about 300 m north of the underground test s i t e , as 

i l lus t ra ted in the sub - t i l l surface map (Fig. 1). There are three major 

types of rock, namely, lep t i te (a Precambrian metavolcanic sediment), the 

iron ore, and granite. The iron ore, which has largely been removed, l ies in 

the lept i te formation. The underground test s i t e , where thermomechanical and 

hydrological tests were conducted, l ies ent i re ly in granite at the test 

level (about 340 ni Jepth) although the surface projection of the test s i te 

f a l l s outside of the outcrop of the granit ic pluton. The location for the 

stress measurement borehole was a compromise between two conf l ic t ing c r i t e r i a : 

( i ) the borehole should be as far away as possible from the mine openings, and 

( i i ) i t should l i e in the same granit ic pluton as the underground test s i t e . 

The almost ent i re ly mined-out iron ore deposits, indicated by the dark 

areas in Fig. 1 , str ike approximately northeast. The surface outcrop of 

th is ore body is about 700 m from SBH-4, at i t s nearest point. However, as 

shown in the 3-D drawing of Fig. 2(a), the envelope of the mine workings 

slopes and spreads out in such a way that , at i t s closes point - - the 360 m 

level - - i t is less than 400 m from SBH-4. 

1.3 Scope of Present Study 
Two methods were used to measure in situ stress in SBH-4, hydrofractur-

ing and overcoring (Doe et al., 1981). Hydrofracturing gives the secondary 



Fig. 1. Surface map of the Stripa mine showing the location of the underground XBL 816-3223 
test s i t e , the SBH-4 hole, and mine coordinates. 
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Fig. 2(a). Three-dimensional diagram showing excavztod regions, 
the underground test site, and SBH-4 location. 
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Fig. 2(b). Projection of the rectangular-slab idealization of the 
mine excavation, superimposed on Fig. 2(a). See also 
Fig. 6(a). 
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principal stresses in the horizontal plane. Overcoring measures the full 
three-dimensional stress tensor. Measurements were made with each method at 
a variety of depths down to about 400 m. There was considerable scatter, 
particularly in the overcoring measurements. 

Because the overcoring measurements are basically ooint measurements, 
whereas hydrofracturing gives the mean stress over the area of the fracture, 
the hydrofracturing measurements were primarily used in this study. Only the-
overcoring measurements, however, can indicate if the mining excavation 
affected the orientation of the principal stresses in 3-D space. 

The present study focuses on the far-field state of stress. This allowed 
us to simplify calculations by ignoring the effect of the drifts excavated 
for the underground experiments, especially since these drifts are much 
smaller than the old mine openings. Hereafter, therefore, the term "excavation" 
will refer exclusively to mining excavations. 

In view of the extremely comolicated geometry of the mine openings 
and the uncertainties in rock mass properties, it was impractical to model 
the 3-D configuration at this stage. Therefore, as a first step, approximate 
2-D finite element models of horizontal and vertical sections were used. In 
these models the ore body was assumed to be completely extracted, Droviding 
upper-bound estimates of ar.y stress concentration that might have affected 
the in situ stress measurements. The results of 2-D analyses should indicate 
whether 3-D modeling would be necessary. Figure 2(b) illustrates one ideali­
zation of the mine openings superimposed upon a 3-D drawing of the actual 
openings. 
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It should be emphasized that ab initio calculation of in situ stress 
is impossible. The stress concentration factor (SCF) is used to quantify 
the effect of the excavation on the in situ stress. This factor is the ratio 
of the stress at any point after an excavation to the stress before excavation 
at the same point. With the linear rock properties assumed in these models, 
the SCF is affected by the relative, bu'c not the absolute, maqnitudes of 
the pre-excavation stress components. 

The effect of mining was studied by assuming that the pre-mininq verti­
cal stress was determined by the weight of the overburden, a reasonable 
assumption. A linear fit from the hydrofracture data was used for the assumed 
horizontal stress. The effect of the mininq excavations was then modeled. A 
calculated SCF close to 1.0 would suggest that these assumptions are 
reasonable; a value much different from 1.0 would suggest a need to modify 
them. 
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2.0 NUMERICAL MODELING 
In calculating the in situ state of stress in an elastic rock medium 

with a mine opening, one can either (i) include the initial (pre-mining 
stress directly in the finite element formulation and then create the ODening, 
or (ii) apply equivalent boundary loads to the medium in which the opening 
already exists. The finite element implementation of these two options is 
briefly reviewed in Section 2.1. Both methods were used in the present 
study. The general assumptions, geometric idealization, loading and boundary 
conditions, and material properties employed in the analysis of the Stripa 
stituation are presented in Section 2.2 

2.1 Methods for Including Initial Stress in Finite Element Analysis 
The instantaneous stress in an elastic body can be expressed as: 

s. 'g (JL -s,,) +2o • (D* 
where 

a_ = instantaneous stress (vector), 
JJ = elasticity matrtix, 
^ = instantaneous strain (vector), 
e^ = initial strain (vector), 
a^ = initial stress (vector). 

The finite element formulation of the problem of equilibrium (Zienkiewicz, 
1977) leads to the equation: 

K.1+ f. = r. , (2) 

•Although stress is a tensor quantity, it is expedient to arrange the 
stress components in the form of a column vector. 
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where X = system stiffness matrix, 
^ = nodal displacement vector, 
£ = distributed (body or surface) force vector, 
£ = external concentrated nodal force vector. 

The force vector, f_, is given by 

f = - / N 1 b dV - / N 1 ! dA - J V D e dV + / JJT „ dV , (3) 
V - A " V - ~ o. V ~ _ o 

where 

j ^ = transpose of shape function matrix, 

J> = body force vector, 

£ = boundary t rac t ion , 

J5 = transpose of strain-displacement matrix (see below), 

V = system volume, 
A = surface enclosing V, 

The matrix B relates the finite element approximation of the strain, e, to 
the nodal displacements; thus: 

E s i = | a . (4) 

Solution of Eq. (2) yields the nodal displacements from which stress can be 
calculated using Eqs. (4) and (1). 

2.1.1 Direct Inclusion of Initial Stress 
The general method for including initial stress in finite element 

analysis is by implementing the full sets of Eqs. (1) - (4) above. This 
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formulation is valid for both linear and nonlinear elasticity, provided that, 
in the latter case, the various quantities in the equations are interpreted 
as incremental quantities or, alternatively, an iterative procedure is used. 
For a highly nonlinear rock, the excavation sequence can be simulated by 
sequential removal of the elements representing the excavation. This procedure 
is now considered standard. The interested reader should consult Zienkiewicz 
(1977) for details. 

2.1.2 Boundary Loading 
For linear e las t i c i t y , in the absence of other causes of i n i t i a l s t ra in , 

one has the i n i t i a l condition 

«o • £ « o • (5) 

Equation (1) then reduces to : 

£. = £ . £ . (!') 

while Eq. (3) reduces to : 

f_ = - J V b_ dV - Jji Tt_dA . (31) 
V - A ~ 

The combined initial and excavation-induced stresses can be obtained by 
solving Eq. (2) in conjunction with Eqs. (1') and (3') with an appropriate 
boundary condition to simulate the initial (pre-mining) stress, o . 
In practice, this can be effected by either (i) applying negative traction to 
the excavation boundary (Chan, 1979) or (ii) assuming the excavation boundary 
to be stress free and applying boundary loads to the external boundary of the 
system (see Section 2.2.2). 
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Simulation of i n i t i a l stress by boundary loading is not quite correct 

since th is would deform the rock even in the absence of any opening. I f 

the point of interest is su f f ic ient ly far away from the boundary, however, 

the error introduced would be small by v i r ture of St. Venant's pr inc ip le. 

2.2. Calculations 

Calculations were undertaken for the horizontal and vert ical sections 

shown in Figs. 3 and 4, respectively. In the analysis of the horizontal 

sections, the 176 m and 360 m levels were selected because the mined-out 

area is largest at the former level and nearest to the SBH-4 borehole at 

the la t te r . In s i tu stresses measured at SBH-4 were expected to deviate 

from the pre-mining state by the greatest amount at either of these two 

levels. 

Vertical sections of mine openings shown in Fig. 4 are those intersected 

by prof i les 14, 67, 42, and 100M (Fig. 2) , which are normal to the str ike 

of the ore body. This orientation was chosen because theoretical solutions 

for stress d is t r ibut ion about el l ipsoidal cavities (Sadowsky and Sternberg, 

1949) had demonstrated that the zone of influence about 3-D openings is more 

nearly proportional to the radius of the shortest dimension of the opening 

than to the longest. The chosen orientation allows the shortest possible 

opening dimension so that the size of the zone of influence as well as the 

magnitude of stress redistr ibuted by the mine opening w i l l not be unrea l is t ica l ly 

overestimated. 

General assumptions made in the analyses were that ( i ) the entire 

ore body had been removed and ( i i ) a l l openings were i n f i n i t e l y long. The 

second assumption permitted the problems to be reduced to two dimensions. 
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Fig. 3. Horizontal sections showing 
excavated regions (shaded) at 176 
and 360 m levels. 
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14 
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Fig. 4. Vertical section approximately normal to strike 
of ore body showing superposed excavated 
regions on profiles 42, 67, 14 and 100H, 
indicated by different types of lines 
corresponding to those in Fig. 1. Viewing 
direction = SW to NE. 
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This approach is conservative and should yield results indicating the maximum 
possible alterations of initial stresses due to mining. 

2.2.1 Geometrical Idealizations 

Geometrical idealizations of the mined-out areas in Figs. 3 and 4 are 

shown in Figs. 5 and 6, respectively. 

In the analysis of the ver t ica l sections, two di f ferent geometrical 

approximations were adopted: a single rectangle and two paral lel rectangles 

as shown in Fig. * . The single rectangle circumscribes prof i les of al"i the 

mine openings while the double rectangles more accurately represent the geo­

metrical characteristics of the prof i les of the minetf-out ore body. 

2.2.2 Loading and Boundary Conditions 

Loading conditions for all cases in this report were based on results 
from hydraulic fracturing experiments in SBH-4 (Doe et al., 1981). The mean 
orientation of the maximum horizontal stress is indicated by the experimental 
results to be N 65° w (Fig. 7). 

The vertical stress component was assumed to be due totally to lithostatic 
stress. On the Dasis of the value of Stripa granite density given by Swan 
(1978) (density = 2622 kg/m 3), the distribution of vertical stress as a 
function of depth z (positive downwards) was found to be: 

a„ = 25721 z (Pa) . (6)* 

*The large numbers cf digits in Eqs. («) and (7) are given to facilitate 
numerical evaluation and should not be taken as an indication of the accu­
racy of the data. 
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-200X o y iQow -
100OY 1200Y 

XGL S13-573 

Fig. 5(a). Idealized geometry (bold l ine) of the 
horizontal section at the 176 m level . 
Direction of the X-axis corresponds to 
mine North. 
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Fig. 5(b). Idealized geometry (bold line) of the horizontal section at the 360 m level. Direction of X-axis corresponds to mine North. 
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DeptMm) 

( a ) °T S8H-4 

fc::r;.-3=jj, 

Fig. 6(a). Idealized geometry (bold line) of the superposed 
vertical sections in Fig. A — single rectangle. See 
also Fig. 2(b) for 3D projection. 

Deprhfm) 

C b ) °T SBH-4 •*. 

Fig. 6(b). Idealized geometry (bold line) of the superposed 
vertical sections ~ double rectangles. 
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TRUE NORTH 

MINE NORTH i I 

^ H MAX 

V3L 816-3232 

Fig. 7. Orientations of maximum horizontal stress (as 
determined by hydraulic fracturing) and vertical 
profiles. 
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Applying regression analysis on the hydraulic fracturing experimental data 
(Doe et al., 1981), the distributions of maximum horizontal stress, o H , 
and minimum horizontal stress, o„ . are found to be: 

nnnn 

o H = 10 6 (10.03724 + 0.038801 z) (Pa) , 
max 

and 
CTH = 10 6 (1.69304 + 0.029868 z) (Pa) , 

min 

0 ^ z < 400 . . (7)* 

The validity of the foregoing expressions is limited to the depth range 
of 0 to 400 m over which in situ stress was measured. Beyond the depth of 
400 m, the relationship between the average horizontal stress and the vertical 
stress is assumed to lie within the global lower and upper bounds given by 
Hoek and Brown (1978). This relationship is depicted in Fig. 8. 

For the depth range over which they were measured, the relationship be­
tween the stresses is given by: 

„ _ average horizontal stress 
vertical stress 

264/z +1.39 0 £ z <_ 400 m (8) 
573/z + 0.61 z I 400 m . 

In the analyses of the horizontal sections, the maximum and minimum 
horizontal stresses at the 176 m and 360 m levels were calculated using Eq. 
(7). These secondary principal stresses in the horizontal plane were assumed 
to represent initial principal stresses that existed prior to any mining 
activity. Since the reference axes for the calculations coincided with the 
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Fig. 8. Curves showing ratio between average horizontal 
stress to vertical stress as a function of depth. 
Dashed curves are bounding values according to 
Hoek and Brown (1978); solid curve represents 
values adopted for present work. 
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north and east orientations of the mine coordinate system, the principal 

stress components had to be resolved in relat ion to these reference axes. 

The resolved components of stress are shown in Figs. 9, 10, and 11; boundary 

conditions are also included. (Note that Figs. 9, 10, and 11 correspond to 

the discretizations in Figs. 14, 16(a), and 16(b), respectively.) 

In the analyses of the vert ical p ro f i les , the horizontal stress components 

were found by rotat ing the principal stress components given by Eqs. (6) -

(8) to the plane of the model. Boundary and loading conditions are shown in 

Figs. 12 and 13. (Conditions in Figs. 12 and 13 correspond to discretizations 

in Figs. 18(a) and 18(b), respectively.) 

2.2.3 Material Properties 

In the analyses, the rock was assumed to be an isotropic, l inear elast ic 

continuum with the following material properties: 

Young's modulus, E =51.3 GPa 

Poisson's r a t i o , v = 0.23 

Rock density, p = 2622 kg/m 3. 

These properties are for intact core specimens of Stripa granite, as 

given by Pratt et a l . (1977) for E and v, and Swan (1978) for p. 

For a 2-D isotropic, linear elastic medium the calculated stress concen­

t rat ion factor due to openings i s , of course, independent of the elast ic 

properties (Savin, 1961). In a 3-D solid the stress concentration factor 

w i l l depend on Poisson's ra t io (Sadowsky and Sternberg, 1949). 
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Fig. 9(a). Boundary and loading conditions of 
the 360 m level horizontal section 
-d i rect application of in -s i tu 
stresses. 

Fig. 9(b). Boundary and loading conditions of the 360 m 
level horizontal section - application of 
boundary forces. 
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XBL 816-3236 

Fig. 10. Loading and boundary conditions of the 
176 m level horizontal section. 

I IS.24 » 

-<^ SBM 4 

4T % 

Fig. 11. Loading and boundary conditions of the 
360 m level horizontal section. 
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53.74 HPa 51.44 HPa 

HORIZONTAL STRESS VERTICAL STRESS 
DISTRIBUTION DISTRIBUTION 

XBL 816-323B 

Fig. 12. Boundary and loading conditions of the vertical section with 
single rectangular opening. 

Fig 13. Boundary conditions of the vertical 
section with double rectangular openings. 
Loading conditions are identical to those 
in Fig. 12. 
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3.0 RESULTS AND DISCUSSION 
In this section, results are presented and discussed for (i) a test 

case with a relatively coarse 2-D mesh using two different methods for a 
consistency check of the computational techniques and (ii) four cases involv­
ing two horizontal and two vertical sections using finer 2-D meshes to 
simulate the field situation at Stripa. 

3.1 Comparison of Two Loading Conditions 
Sensitivity of stress distribution to changes in the two loading condi­

tions—direct application of in situ stresses and the application of boundary 
forces, as discussed in Section 2.1—was investigated first. Por this 
purpose, a configuration corresponding to the horizontal section at the 360 m 
level was employed. 

The spatial discretization, comprising 308 nodes and 208 linear isopara­
metric quadrilateral elements, is displayed in Fig. 14. The two loading 
cases are show in Fig. 9. Stress distributions resulting from the loading 
conditions are shown in Fig. 15, from which one may conclude that they are 
almost identical. 

Similar results, not shown in this report, were observed in stress 
distributions from the two loading cases in one of the vertical sections. 
On the basis of the evidence shown in Fig. 15, it may be inferred that 
consistent stress distributions can be calculated with either of the loading 
conditions tested, as expected from theory. 

Since it is more expedient with available computer programs to employ 

the boundary loading technique, this approach was adopted in the actual 

stress analyses. 
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MINE NORTH 

XBL 816-3240 

F i g . 14. F i n i t e element mesh, 360 m l eve l h o r i z o n t a l s e c t i o n . 
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3.2 Horizontal Sections 
Discretizations of the horizontal sections at the 176 m and 360 m 

levels are displayed in Fig. 16; the internal openings represent excavated 
ore bodies. Details of discretizations are given in Table 1. Boundary and 
loading conditions are given in Figs. 10 and 11. 

Calculated redistributed stress patterns at the 176 m and 360 m levels 
are shown in Fig. 17. A comparison between the initial stress with the 
redistributed stresses indicates that significant redistribution is confined 
to areas close to the openings. (In both 17(a) and 17(b), cross-like points 
far from the openings represent the magnitudes and orientations of the 
initial stresses.) 

The calculation of stress concentration factors in terms of normal 
stress components at the location of SBH-4 is shown in Table 2. The results, 
which are very similar for the two sections, indicate that the presence of the 
mine openings has altered the in situ stress by 15% or less. 

3.3 Vertical Sections 
The finite element meshes of the vertical sections, where the mine 

openings were approximated by a single rectangle and by two rectangles, are 
displayed in Fig. 18. Details of discretization are given in Table 1. 
Boundary and loading conditions are shown in Figs. 12 and 13. 
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Fig. 16(a). Finite element mesh for the 176 m 
horizontal section. 

Fig. 16(b). Finite element mesh for the 360 m 
horizontal section. 
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Table 1. Discretization details. 

Section No. of Nodes No. of Elements Illustration 

176 B H 768 

360 m H 656 
Single rectangle V 661 
Double rectangle V 806 

Note: H -- Horizontal 
V — Vertical 

Table 2. Normal stresses and stress concentration factors at SBH-4, 
horizontal sections. 

Level " y (MPa) °5 (MPa) a R 

SCF= / - o x(MPa) o* (MPa) 
o R 

SCF = — x 

X 

176 m 

360 m 
13.60 

20.29 

15.10 
2i:94 

1.11 

1.09 

10.21 

16.22 

8.72 

14.51 
0.85 

0.89 

Note: In labeling the stress components, positive y-axis corresponds to 
the mine-east direction and positive x-axis corresponds to the mine-north 
direction. 

Ov, o v are normal stresses deduced from hydrofracture measurements 
(Doe et al., 1981). 
Superscript R refers to redistributed stresses. 
SCF >•• stress concentration factor. 

724 Fig. 16 (a) 
615 Fig. 16 (b) 
600 Fig. 18 (a) 
723 Fig. 18 (b) 
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GROUND SURFACE 

Fig. 18(a). Finite element mesh for the vertical 
section with single rectangular opening. 

GROUND SURFACE 

XBL 8I6-32AB 

Fig. 18(b). Finite element mesh for the vertical 
section with double rectangular opening. 
Rock elements are put back between the 
openings. 
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Patterns of calculated redistributed stress are displayed in Fig. 19. 
Significant stress changes occurred from the ground surface down to about 
200 m. Furthermore, the patterns of redistributed stresses outside the 
openings are practically independent of the number of rectangular openings. 

From an inspection of plots of stress concentration factor (SCF) vs. 
depth given in Fig. 20, one can infer that at depths greater than 200 m the 
alteration of initial stresses is no more than 25%. At less than 200 m it is 
apparent that SCF increases fairly rapidly as the depth becomes shallower. 
This is discussed in the next section. 

In the numerical models the reasonable assumption was made that the 
pre-mining principal stresses were vertical and horizontal. A comparison of 
the overcoring measuremnt with the calculated redistributed stresses was made 
(Fig. 21) to study whether the inclined angles of the overcoring principal 
stresses are consistent with this modeling assumption. Unfortunately, the 
scatter of the overcoring measurements obscures ihc answer to this question. 

3.4 Discussion 
The basic objective of the analyses was to estimate the effects of 

mining upon the redistr ibut ion of in s i tu stresses. The analyses were 

carried out via a series of two-dimensional approximations. Such approxima­

tions are quite conservative ( in that they y ie ld the upper bounds of changes 

in i n i t i a l stress) because in two-dimensional projection the excavated areas 

anpear to be closer to the SBH-4 hole than they are in rea l i t y (see Figs. 1 

and 2) . This is part icular ly true for the vert ical sections. 



Fig. 19(a). Principal stress distribution in 
the vertical section with one 
rectangular opening. Depth and 
magnitude of initial stresses are 
shown on left. Arrows denote 
tension. 

P 30 HPa 

STRESS SCALE 

Fig. 19(b). 
XBL 816-32E0A 

Principal stress distribution in 
the vertical section with double 
rectangular openings. Depth and 
magnitude of initial stresses are 
shown on left. Arrows denote 
tension. 
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(a) Single Rectangle Model CtO Double Rectangle Model 

Overcoring Measurements, 
Horizontal Stress 

Overcoring Measurements, 
Vertical Stress 

Fig. 20. Plots of stress concentration factors (calculated redis­
tr ibuted s t ress / in i t i a l stress) for horizontal and 
vert ical stress components on the vert ical plane at the 
SBH-4 hole vs. depth from ground surface. For compari­
son, the measured stresses from overcoring have been 
divided by the assumed pre-mining in s i tu stresses. 
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Calculated Redistributed Stress 
from model in f i g . 6(b) 

Depth (m) I n i t i a l Stress 
Assumed in Itodels 

Horz. and Vert. 
Comnjnents 

Principal 
Stresses 

Overcoring 
Measurement 

XBL 816-3252 

Fig. 21. Comparison of initial stress, calculated redistributed stress, 
and overcoring data. 



35 

The closest actual approach of the mining excavation to the SBH-4 
borehole is about 350 m, at a depth of about 360 m; it is about 700 m from it 
at the surface. In the vertical models, the excavation is about 100 m from 
S8H-4 at a depth of 100 m. It is therefore not surprising that the calculated 
redistributed stresses for the vertical sections are much higher than the 
measured stresses close to the surface. 

The calculation of in situ stress from field experiments, by either 
the overcoring or the hydraulic fracturing method, is always based on simpli­
fying assumptions about the rock mass — that it is, for example, homo­
geneous, intact, isotropic, and linear elastic. Such assumptions are usually 
not satisfied by field conditions. Results obtained from these tests are 
therefore always associated with errors due to field uncertainties. It is 
also possible that the in situ stress actually varies rapidly from point to 
point. The large scatter of the measurements (Fig. 21) provides some indica­
tion of the magnitude of these uncertainties. The measurement errors are 
likely to be largest near to the surface where, due to lower in situ stresses, 
more open fractures are likely. 

These near-surface measurement error-; and uncertainties in the vertical 
cases mane it difficult to judge whether the large stress concentration 
factors at shallow depths really represent the in situ condition. These 
results, however, are of little concern because the underground experimental 
areas, the main region of interest, is below 300 m. 

Results from the analyses of the horizontal sections indicate that 
the maximum change in the in situ stress is about 15%; in the vertical 
sections at depths greater than 200 m, it is about 25%. These changes are 
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relatively small compared with the uncertainties in the measured stress. 
Likewise, the calculated changes in stress orientation for the horizontal 
sections and for the vertical sections below a depth of 200 m are comparable 
with the scatter of the overcoring measurements. 
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4.0 CONCLUSIONS 
On the basis of the present study, the following conclusions may be 

drawn: (i) At depths between 200 m and 400 m, encompassing the underground 
test horizon, the mining-induced stress concentrations are relatively insig­
nificant when the uncertainties in the in situ stress measurements are 
considered; (ii) differences between orientations of principal stresses from 
finite element modeling using vertical sections and those from overcoring 
measurements are comparable with the variations among different overcoring 
measurements at approximately the same depth; (iii) further elaboration of 
the numerical modeling of far-field stress appears unwarranted; and (iv) for 
the purpose of near-field ir. situ stress calculations, the vertical stress 
due to overburden weight, along with horizontal stresses measured by hydro-
fracturing at SBH-4, can be taken as the inital, pre-mining far-field stress. 
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APPENDIX: CONTOUR PLOTS OF STRESS CONCENTRATION FACTORS 
This appendix consists of a set of contour plots of the stress concen­

tration factors, defined as the ratio of the horizontal ((.:• vertical) compo­
nent of calculated redistributed stress in the presence of the mine openings(s) 
to the corresponding component of assumed pre-mining stress. All four finite 
element models reported in the main text are illustrated. 
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A l (a) STRESS I.C1CENIRATI0N FACTOR 
VERTICAL ACTION 
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INTERVAL .25 

Fig. Al(a). Stress concentration factor contours, vertical section, one 
rectanjular opening-horizontal stress component. 
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Fig, Al(b). Stress concentration factor contours, vertical section, one 
rectangular opening-vertical stress component. 
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•TRESS CQNCEN1P/TI0N FACTOB 
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INTERVAL ,?S 

I'lX-

Fig. A2(a). Stress concentration factor contours, vertical section, two 
rectangular openings - horizontal stress component. 
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Fig. AZ(b). Stress concentration factor contours, vertical section, 
rectangular openings - vertical stress component. two 
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Fig. A3(a). Stress concentration factor contours, 
horizontal section 176 m level - E-W 
stress component. 

M (b) STRESS CONCENTRATION FACTOR CONTOUR PLOTTING LIHITS 
HORIZONTAL SECTION HIGH 3.00 

INTERVAL 0.2 
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Fig. A3(b). Stress concentration factor contours, 
horizontal section 176 m level - M-S 
stress component. 
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Fig. A4(b). Stress concentration factor contours, 
horizontal section, 340 m level -
N-S stress component. 
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Fig. A4(a). Stress concentration factor contours, 
horizontal section, 340 m level -
E-W stress component. 


