1,415 research outputs found

    Enumeration of self avoiding trails on a square lattice using a transfer matrix technique

    Full text link
    We describe a new algebraic technique, utilising transfer matrices, for enumerating self-avoiding lattice trails on the square lattice. We have enumerated trails to 31 steps, and find increased evidence that trails are in the self-avoiding walk universality class. Assuming that trails behave like Aλnn1132A \lambda ^n n^{11 \over 32}, we find λ=2.72062±0.000006\lambda = 2.72062 \pm 0.000006 and A=1.272±0.002A = 1.272 \pm 0.002.Comment: To be published in J. Phys. A:Math Gen. Pages: 16 Format: RevTe

    Low-Temperature Series for the Correlation Length in d=3d=3 Ising Model

    Get PDF
    We extend low-temperature series for the second moment of the correlation function in d=3d=3 simple-cubic Ising model from u15u^{15} to u26u^{26} using finite-lattice method, and combining with the series for the susceptibility we obtain the low-temperature series for the second-moment correlation length to u23u^{23}. An analysis of the obtained series by inhomogeneous differential approximants gives critical exponents 2ν+γ2.55 2\nu^{\prime} + \gamma^{\prime} \approx 2.55 and 2ν1.27 2\nu^{\prime} \approx 1.27 .Comment: 13 pages + 5 uuencoded epsf figures in Latex, OPCT-94-

    New Algorithm of the Finite Lattice Method for the High-temperature Expansion of the Ising Model in Three Dimensions

    Full text link
    We propose a new algorithm of the finite lattice method to generate the high-temperature series for the Ising model in three dimensions. It enables us to extend the series for the free energy of the simple cubic lattice from the previous series of 26th order to 46th order in the inverse temperature. The obtained series give the estimate of the critical exponent for the specific heat in high precision.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter

    Thermodynamics of the Antiferromagnetic Heisenberg Model on the Checkerboard Lattice

    Full text link
    Employing numerical linked-cluster expansions (NLCEs) along with exact diagonalizations of finite clusters with periodic boundary condition, we study the energy, specific heat, entropy, and various susceptibilities of the antiferromagnetic Heisenberg model on the checkerboard lattice. NLCEs, combined with extrapolation techniques, allow us to access temperatures much lower than those accessible to exact diagonalization and other series expansions. We find that the high-temperature peak in specific heat decreases as the frustration increases, consistent with the large amount of unquenched entropy in the region around maximum classical frustration, where the nearest-neighbor and next-nearest neighbor exchange interactions (J and J', respectively) have the same strength, and with the formation of a second peak at lower temperatures. The staggered susceptibility shows a change of character when J' increases beyond 0.75J, implying the disappearance of the long-range antiferromagnetic order at zero temperature. For J'=4J, in the limit of weakly coupled crossed chains, we find large susceptibilities for stripe and Neel order with Q=(pi/2,pi/2) at low temperatures with antiferromagnetic correlations along the chains. Other magnetic and bond orderings, such as a plaquette valence-bond solid and a crossed-dimer order suggested by previous studies, have also been investigated.Comment: 10 pages, 13 figure

    Critical behaviour of the two-dimensional Ising susceptibility

    Full text link
    We report computations of the short-distance and the long-distance (scaling) contributions to the square-lattice Ising susceptibility in zero field close to T_c. Both computations rely on the use of nonlinear partial difference equations for the correlation functions. By summing the correlation functions, we give an algorithm of complexity O(N^6) for the determination of the first N series coefficients. Consequently, we have generated and analysed series of length several hundred terms, generated in about 100 hours on an obsolete workstation. In terms of a temperature variable, \tau, linear in T/T_c-1, the short-distance terms are shown to have the form \tau^p(ln|\tau|)^q with p>=q^2. To O(\tau^14) the long-distance part divided by the leading \tau^{-7/4} singularity contains only integer powers of \tau. The presence of irrelevant variables in the scaling function is clearly evident, with contributions of distinct character at leading orders |\tau|^{9/4} and |\tau|^{17/4} being identified.Comment: 11 pages, REVTex

    A numerical adaptation of SAW identities from the honeycomb to other 2D lattices

    Full text link
    Recently, Duminil-Copin and Smirnov proved a long-standing conjecture by Nienhuis that the connective constant of self-avoiding walks on the honeycomb lattice is 2+2.\sqrt{2+\sqrt{2}}. A key identity used in that proof depends on the existence of a parafermionic observable for self-avoiding walks on the honeycomb lattice. Despite the absence of a corresponding observable for SAW on the square and triangular lattices, we show that in the limit of large lattices, some of the consequences observed on the honeycomb lattice persist on other lattices. This permits the accurate estimation, though not an exact evaluation, of certain critical amplitudes, as well as critical points, for these lattices. For the honeycomb lattice an exact amplitude for loops is proved.Comment: 21 pages, 7 figures. Changes in v2: Improved numerical analysis, giving greater precision. Explanation of why we observe what we do. Extra reference

    Lattice Green Function (at 0) for the 4d Hypercubic Lattice

    Full text link
    The generating function for recurrent Polya walks on the four dimensional hypercubic lattice is expressed as a Kampe-de-Feriet function. Various properties of the associated walks are enumerated.Comment: latex, 5 pages, Res. Report 1

    Wither the sliding Luttinger liquid phase in the planar pyrochlore

    Full text link
    Using series expansion based on the flow equation method we study the zero temperature properties of the spin-1/2 planar pyrochlore antiferromagnet in the limit of strong diagonal coupling. Starting from the limit of decoupled crossed dimers we analyze the evolution of the ground state energy and the elementary triplet excitations in terms of two coupling constants describing the inter dimer exchange. In the limit of weakly coupled spin-1/2 chains we find that the fully frustrated inter chain coupling is critical, forcing a dimer phase which adiabatically connects to the state of isolated dimers. This result is consistent with findings by O. Starykh, A. Furusaki and L. Balents (Phys. Rev. B 72, 094416 (2005)) which is inconsistent with a two-dimensional sliding Luttinger liquid phase at finite inter chain coupling.Comment: 6 pages, 4 Postscript figures, 1 tabl

    Partially directed paths in a wedge

    Full text link
    The enumeration of lattice paths in wedges poses unique mathematical challenges. These models are not translationally invariant, and the absence of this symmetry complicates both the derivation of a functional recurrence for the generating function, and solving for it. In this paper we consider a model of partially directed walks from the origin in the square lattice confined to both a symmetric wedge defined by Y=±pXY = \pm pX, and an asymmetric wedge defined by the lines Y=pXY= pX and Y=0, where p>0p > 0 is an integer. We prove that the growth constant for all these models is equal to 1+21+\sqrt{2}, independent of the angle of the wedge. We derive functional recursions for both models, and obtain explicit expressions for the generating functions when p=1p=1. From these we find asymptotic formulas for the number of partially directed paths of length nn in a wedge when p=1p=1. The functional recurrences are solved by a variation of the kernel method, which we call the ``iterated kernel method''. This method appears to be similar to the obstinate kernel method used by Bousquet-Melou. This method requires us to consider iterated compositions of the roots of the kernel. These compositions turn out to be surprisingly tractable, and we are able to find simple explicit expressions for them. However, in spite of this, the generating functions turn out to be similar in form to Jacobi θ\theta-functions, and have natural boundaries on the unit circle.Comment: 26 pages, 5 figures. Submitted to JCT
    corecore