1,415 research outputs found
Enumeration of self avoiding trails on a square lattice using a transfer matrix technique
We describe a new algebraic technique, utilising transfer matrices, for
enumerating self-avoiding lattice trails on the square lattice. We have
enumerated trails to 31 steps, and find increased evidence that trails are in
the self-avoiding walk universality class. Assuming that trails behave like , we find and .Comment: To be published in J. Phys. A:Math Gen. Pages: 16 Format: RevTe
Low-Temperature Series for the Correlation Length in Ising Model
We extend low-temperature series for the second moment of the correlation
function in simple-cubic Ising model from to using
finite-lattice method, and combining with the series for the susceptibility we
obtain the low-temperature series for the second-moment correlation length to
. An analysis of the obtained series by inhomogeneous differential
approximants gives critical exponents and .Comment: 13 pages + 5 uuencoded epsf figures in Latex, OPCT-94-
New Algorithm of the Finite Lattice Method for the High-temperature Expansion of the Ising Model in Three Dimensions
We propose a new algorithm of the finite lattice method to generate the
high-temperature series for the Ising model in three dimensions. It enables us
to extend the series for the free energy of the simple cubic lattice from the
previous series of 26th order to 46th order in the inverse temperature. The
obtained series give the estimate of the critical exponent for the specific
heat in high precision.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter
Thermodynamics of the Antiferromagnetic Heisenberg Model on the Checkerboard Lattice
Employing numerical linked-cluster expansions (NLCEs) along with exact
diagonalizations of finite clusters with periodic boundary condition, we study
the energy, specific heat, entropy, and various susceptibilities of the
antiferromagnetic Heisenberg model on the checkerboard lattice. NLCEs, combined
with extrapolation techniques, allow us to access temperatures much lower than
those accessible to exact diagonalization and other series expansions. We find
that the high-temperature peak in specific heat decreases as the frustration
increases, consistent with the large amount of unquenched entropy in the region
around maximum classical frustration, where the nearest-neighbor and
next-nearest neighbor exchange interactions (J and J', respectively) have the
same strength, and with the formation of a second peak at lower temperatures.
The staggered susceptibility shows a change of character when J' increases
beyond 0.75J, implying the disappearance of the long-range antiferromagnetic
order at zero temperature. For J'=4J, in the limit of weakly coupled crossed
chains, we find large susceptibilities for stripe and Neel order with
Q=(pi/2,pi/2) at low temperatures with antiferromagnetic correlations along the
chains. Other magnetic and bond orderings, such as a plaquette valence-bond
solid and a crossed-dimer order suggested by previous studies, have also been
investigated.Comment: 10 pages, 13 figure
Critical behaviour of the two-dimensional Ising susceptibility
We report computations of the short-distance and the long-distance (scaling)
contributions to the square-lattice Ising susceptibility in zero field close to
T_c. Both computations rely on the use of nonlinear partial difference
equations for the correlation functions. By summing the correlation functions,
we give an algorithm of complexity O(N^6) for the determination of the first N
series coefficients. Consequently, we have generated and analysed series of
length several hundred terms, generated in about 100 hours on an obsolete
workstation. In terms of a temperature variable, \tau, linear in T/T_c-1, the
short-distance terms are shown to have the form \tau^p(ln|\tau|)^q with p>=q^2.
To O(\tau^14) the long-distance part divided by the leading \tau^{-7/4}
singularity contains only integer powers of \tau. The presence of irrelevant
variables in the scaling function is clearly evident, with contributions of
distinct character at leading orders |\tau|^{9/4} and |\tau|^{17/4} being
identified.Comment: 11 pages, REVTex
A numerical adaptation of SAW identities from the honeycomb to other 2D lattices
Recently, Duminil-Copin and Smirnov proved a long-standing conjecture by
Nienhuis that the connective constant of self-avoiding walks on the honeycomb
lattice is A key identity used in that proof depends on
the existence of a parafermionic observable for self-avoiding walks on the
honeycomb lattice. Despite the absence of a corresponding observable for SAW on
the square and triangular lattices, we show that in the limit of large
lattices, some of the consequences observed on the honeycomb lattice persist on
other lattices. This permits the accurate estimation, though not an exact
evaluation, of certain critical amplitudes, as well as critical points, for
these lattices. For the honeycomb lattice an exact amplitude for loops is
proved.Comment: 21 pages, 7 figures. Changes in v2: Improved numerical analysis,
giving greater precision. Explanation of why we observe what we do. Extra
reference
Lattice Green Function (at 0) for the 4d Hypercubic Lattice
The generating function for recurrent Polya walks on the four dimensional
hypercubic lattice is expressed as a Kampe-de-Feriet function. Various
properties of the associated walks are enumerated.Comment: latex, 5 pages, Res. Report 1
Wither the sliding Luttinger liquid phase in the planar pyrochlore
Using series expansion based on the flow equation method we study the zero
temperature properties of the spin-1/2 planar pyrochlore antiferromagnet in the
limit of strong diagonal coupling. Starting from the limit of decoupled crossed
dimers we analyze the evolution of the ground state energy and the elementary
triplet excitations in terms of two coupling constants describing the inter
dimer exchange. In the limit of weakly coupled spin-1/2 chains we find that the
fully frustrated inter chain coupling is critical, forcing a dimer phase which
adiabatically connects to the state of isolated dimers. This result is
consistent with findings by O. Starykh, A. Furusaki and L. Balents (Phys. Rev.
B 72, 094416 (2005)) which is inconsistent with a two-dimensional sliding
Luttinger liquid phase at finite inter chain coupling.Comment: 6 pages, 4 Postscript figures, 1 tabl
Partially directed paths in a wedge
The enumeration of lattice paths in wedges poses unique mathematical
challenges. These models are not translationally invariant, and the absence of
this symmetry complicates both the derivation of a functional recurrence for
the generating function, and solving for it. In this paper we consider a model
of partially directed walks from the origin in the square lattice confined to
both a symmetric wedge defined by , and an asymmetric wedge defined
by the lines and Y=0, where is an integer. We prove that the
growth constant for all these models is equal to , independent of
the angle of the wedge. We derive functional recursions for both models, and
obtain explicit expressions for the generating functions when . From these
we find asymptotic formulas for the number of partially directed paths of
length in a wedge when .
The functional recurrences are solved by a variation of the kernel method,
which we call the ``iterated kernel method''. This method appears to be similar
to the obstinate kernel method used by Bousquet-Melou. This method requires us
to consider iterated compositions of the roots of the kernel. These
compositions turn out to be surprisingly tractable, and we are able to find
simple explicit expressions for them. However, in spite of this, the generating
functions turn out to be similar in form to Jacobi -functions, and have
natural boundaries on the unit circle.Comment: 26 pages, 5 figures. Submitted to JCT
- …