128 research outputs found
Chandrapur Super Thermal Power Station- Environment Management Perspectives
Chandrapur Super Thermal Power Station is a unit of Maharashtra State Power Generation Co. Ltd. (MSPGCL) owned by Govt. of Maharashtra. Its installed capacity is 2920MW (2 x 210MW + 5 x 500MW) power generation. The fuel utilized for power generation is coal. Electrostatic Precipitators (ESP) are provided to all these units. Also provided Four ETP’s for treatment of trade effluent & STP for treatment of domestic effluents. The treated effluents are reutilized for ash slurry disposal. The treated effluents of ETP’s and STP are completely recycled. In this communication, authors have explored the various steps taken by CSTPS for significant reduction of water/air/land foot prints to mitigate the diverse situations and for the protection of environment with electricity generation by taking into account of both ecological and socioeconomic aspects. It is pertinent to mention here that CSTPS is following the latest norms stipulated by MoEF&CC/CPCB/MPCB, wherein all the real time online Continuous Emission (CEMS)/Effluent (CEQMS)/Ambient Air Quality (CAAQMS) systems are connected to online portal developed by regulatory/statutory bodies
Delivering strong 1H nuclear hyperpolarization levels and long magnetic lifetimes through signal amplification by reversible exchange
Hyperpolarization turns typically weak NMR and MRI responses into strong signals so that ordinarily impractical measurements become possible. The potential to revolutionize analytical NMR and clinical diagnosis through this approach reflect this area's most compelling outcomes. Methods to optimize the low cost parahydrogen based approach signal amplification by reversible exchange (SABRE) with studies on a series of biologically relevant nicotinamides and methyl nicotinates are detailed. These procedures involve specific 2H-labelling in both the agent and catalyst and achieve polarization lifetimes of ca. 2 minutes with 50% polarization in the case of 4,6-d2-methylnicotinate. As a 1.5 T hospital scanner has an effective 1H polarization level of just 0.0005% this strategy should result in compressed detection times for chemically discerning measurements that probe disease. To demonstrate this techniques generality, we exemplify further studies on a range of pyridazine, pyrimidine, pyrazine and isonicotinamide analogues that feature as building blocks in biochemistry and many disease treating drugs
PET/CT without capacity limitations: a Danish experience from a European perspective
# The Author(s) 2011. This article is published with open access at Springerlink.com Objectives We report the 3-year clinical experience of a large new Danish PET/CT centre without capacity limitations in relation to national and European developments. Methods The use of PET/CT in cancer was registered from early 2006 to early 2009 to judge the impact on patient management and to compare it with national and European trends. Results 6056 PET/CT examinations were performed in 4327 patients. Activity increased by 86 examinations per month compared with the same month the year before. Referrals came primarily from oncology (23.0%), haematology (21.6%), surgery (12.6%), internal medicine (12.7%) and gynaecology (5.5%). Referral indications were diagnosis (31.3%), staging (22.3%), recurrence detection (21.2%), response evaluation (17.0%) and other (8.2%). Response from nearly 60 % of users showed that PET/CT caused a change in diagnosis and/or staging and/or treatment plan in 36.0 % of cases. During the study period, there was a steep increase in the national use of FDG and in the European use of PET/CT. Conclusions We recorded a constantly increasing use of PET/CT that caused a change in diagnosis and/or stagin
The Leucine Zipper Domains of the Transcription Factors GCN4 and c-Jun Have Ribonuclease Activity
Basic-region leucine zipper (bZIP) proteins are one of the largest transcription factor families that regulate a wide range of cellular functions. Owing to the stability of their coiled coil structure leucine zipper (LZ) domains of bZIP factors are widely employed as dimerization motifs in protein engineering studies. In the course of one such study, the X-ray structure of the retro-version of the LZ moiety of yeast transcriptional activator GCN4 suggested that this retro-LZ may have ribonuclease activity. Here we show that not only the retro-LZ but also the authentic LZ of GCN4 has weak but distinct ribonuclease activity. The observed cleavage of RNA is unspecific, it is not suppressed by the ribonuclease A inhibitor RNasin and involves the breakage of 3′,5′-phosphodiester bonds with formation of 2′,3′-cyclic phosphates as the final products as demonstrated by HPLC/electrospray ionization mass spectrometry. Several mutants of the GCN4 leucine zipper are catalytically inactive, providing important negative controls and unequivocally associating the enzymatic activity with the peptide under study. The leucine zipper moiety of the human factor c-Jun as well as the entire c-Jun protein are also shown to catalyze degradation of RNA. The presented data, which was obtained in the test-tube experiments, adds GCN4 and c-Jun to the pool of proteins with multiple functions (also known as moonlighting proteins). If expressed in vivo, the endoribonuclease activity of these bZIP-containing factors may represent a direct coupling between transcription activation and controlled RNA turnover. As an additional result of this work, the retro-leucine zipper of GCN4 can be added to the list of functional retro-peptides
Design of catalytic polypeptides and proteins
The first part of this review article lists examples of complete, empirical de novo design that made important contributions to the development of the field and initiated challenging projects. The second part of this article deals with computational design of novel enzymes in native protein scaffolds; active designs were refined through random and site-directed mutagenesis producing artificial enzymes with nearly native enzyme- like activities against a number of non-natural substrates. Combining aspects of de novo design and biological evolution of nature's enzymes has started and will accelerate the development of novel enzyme activities
Regeneration of activity by mixture of ribonuclease enzymically degraded from the COOH terminus and a synthetic COOH-terminal tetradecapeptide.
link_to_OA_fulltex
A crystalline synthetic peptide representing the epitope of a monoclonal antibody raised against synthetic interferon-alpha 1 fragment 111-166
The antigenic determinant recognized by the monoclonal antibody that had been raised against synthetic human interferon-alpha 1 (IFN-alpha 1) fragment 111-166 [Arnheiter, H., Thomas, R.M., Leist, T., Fountoulakis, M., and Gutte, B. (1981) Nature (Lond.) 294, 278-280] and that cross-reacted with human IFN-alpha 1, IFN-alpha 2, and IFN-alpha A made in Escherichia coli, was localized to the region between residues 151 and 166 using synthetic COOH-terminal interferon fragments. In solid-phase radioimmunoassays neither the strongly hydrophilic COOH-terminal nonapeptide IFN 158-166 nor its mixtures with IFN 151-162 or IFN 149-158 showed any measurable interaction with the antigen binding site of the monoclonal antibody. For antibody binding, the full covalent structure of IFN 151-166 was required. Quantitatively very similar results were obtained with IFN 149-166 and IFN 143-166. The synthetic COOH-terminal hexadecapeptide of human IFN-alpha 1 (IFN 151-166) could be crystallized
Reactivation of des(119-, 120-, or 121-124) ribonuclease A by mixture with synthetic COOH-terminal peptides of varying lengths.
link_to_OA_fulltex
- …