16 research outputs found

    Carbohydrate masking of an antigenic epitope of influenza virus haemagglutinin independent of oligosaccharide size

    Get PDF
    Comparison of the haemagglutinins (HA) of the pathogenic avian influenza viruses A/FPV/Dutch/27 (H7N7) and A/FPV/Rostock/34 (H7N1) revealed 94.7% nucleotide and 93.8% amino acid sequence homologies. Six of the seven N-glycosidic oligosaccharides of the Rostock HA are at the same positions as the six carbohydrates of the Dutch strain. The additional oligosaccharide side chain of the Rostock strain, which is of the complex type, is attached to asparagine149 in antigenic epitope B. The accessibility of this antigenic epitope has been analysed by using rabbit antisera raised against synthetic peptides comprising amino acids 143-162. The carbohydrates of the HA of the Rostock strain have been modified (i) to truncated cores by expression in insect cells using a baculovirus vector, (ii) to oligomannosidic side chains by growth in the presence of the trimming inhibitor methyldeoxynojirimycin and (iii) to a single N-acetylglucosamine residue by removal of the oligomannosidic sugar with endo-β-N-acetylglucosaminidase H. Neither the authentic nor the modified oligosaccharides allowed antibody binding, as indicated by enzyme-linked immunosorbent assay (ELISA) and Western blot analyses. Reactivity was observed, however, after complete removal of the carbohydrate from HA of the Rostock strain by digestion with peptide-N-glycosidase F. HA of the Dutch strain was reactive without prior peptide-N-glycosidase F treatment. These results demonstrate that a single N-acetylglucosamine at asparagine149 is sufficient to prevent recognition of the peptide epitop

    Expression of the synthetic gene of an artificial DDT-binding polypeptide in Escherichia coli

    Get PDF
    This paper reports the expression of an artificial functional polypeptide in bacteria. The gene of a designed 24-residue DDT-binding polypeptide (DBP) was inserted between the BamHI and PstI cleavage sites of plasmid pUR291. The hybrid plasmid, pUR291-DBP, was cloned in Escherichia coli JM109. After induction by isopropyl-β-D-thiogalactopyranoside a fusion protein was expressed in which DBP was linked to the COOH-termiuus of β-galactosidase. DBP, which is stable to trypsin, was obtained by tryptic digestion of the fusion protein and subsequent fractionation of the tryptic peptides by reversed-phase h.p.l.c. Recombinant and chemically synthesized DBP showed identical chromatographic properties, amino acid composition, and chymotryptic digestion patterns. Both the β-galactosidase-DBP fusion and isolated recombinant DBP bound DDT. The fusion protein was 25 times as potent as the designed 24-residue DBP in activating a cytochrome P-450 model system using equimolar catalytic amounts of the two protein

    Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

    Get PDF
    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo

    The Leucine Zipper Domains of the Transcription Factors GCN4 and c-Jun Have Ribonuclease Activity

    Get PDF
    Basic-region leucine zipper (bZIP) proteins are one of the largest transcription factor families that regulate a wide range of cellular functions. Owing to the stability of their coiled coil structure leucine zipper (LZ) domains of bZIP factors are widely employed as dimerization motifs in protein engineering studies. In the course of one such study, the X-ray structure of the retro-version of the LZ moiety of yeast transcriptional activator GCN4 suggested that this retro-LZ may have ribonuclease activity. Here we show that not only the retro-LZ but also the authentic LZ of GCN4 has weak but distinct ribonuclease activity. The observed cleavage of RNA is unspecific, it is not suppressed by the ribonuclease A inhibitor RNasin and involves the breakage of 3′,5′-phosphodiester bonds with formation of 2′,3′-cyclic phosphates as the final products as demonstrated by HPLC/electrospray ionization mass spectrometry. Several mutants of the GCN4 leucine zipper are catalytically inactive, providing important negative controls and unequivocally associating the enzymatic activity with the peptide under study. The leucine zipper moiety of the human factor c-Jun as well as the entire c-Jun protein are also shown to catalyze degradation of RNA. The presented data, which was obtained in the test-tube experiments, adds GCN4 and c-Jun to the pool of proteins with multiple functions (also known as moonlighting proteins). If expressed in vivo, the endoribonuclease activity of these bZIP-containing factors may represent a direct coupling between transcription activation and controlled RNA turnover. As an additional result of this work, the retro-leucine zipper of GCN4 can be added to the list of functional retro-peptides

    Synthesis and Enzymic Properties of a 63-Residue Analogue of Ribonuclease A

    No full text

    A Shortened Synthetic Pro-Insulin

    No full text
    corecore