263 research outputs found

    CAM-EULAG: a non-hydrostatic atmospheric climate model with grid stretching

    Get PDF
    This study evaluates the capability of a non-hydrostatic global climate model with grid stretching (CEU) that uses NCAR Community Atmospheric Model (CAM) physics and EULAG dynamics. We compare CEU rainfall with that produced by CAM using finite volume dynamics (CFV). Both models simulated climate from 1996 to 2000, using the same parameterization schemes

    Calibration and Validation of a Regional Climate Model for Pan-Arctic Hydrologic Simulation

    Get PDF
    A number of polar datasets have recently been released involving in situ measurements, satellite retrievals, and reanalysis output that provide new opportunities to evaluate regional climate in the Arctic. These data have been used to assess a 1-yr pan-Arctic simulation (October 1985–September 1986) performed by a version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) that incorporated the NCAR land surface model (LSM) and a simple thermodynamic sea ice model to investigate interactions between the land surface and atmosphere. The model\u27s standard cloud scheme using relative humidity was replaced by one using simulated cloud liquid water and ice water after a set of short test simulations revealed excessive cloud cover. Model validation concentrates on factors relevant to the water cycle: atmospheric circulation, temperature, surface radiation fluxes, precipitation, and runoff. The model captures general patterns of atmospheric circulation over land. The rms differences from the Historical Arctic Rawinsonde Archive (HARA) rawinsonde winds at 850 hPa are smaller for the simulation (9.8 m s−1) than for the NCEP–NCAR reanalysis (10.5 m s−1) that supplies the model\u27s boundary conditions. For continental watersheds, the model simulates well annual average surface air temperature (bias \u3c2°C) and precipitation (bias \u3c0.5 mm day−1). However, the model has a summer dry bias with monthly precipitation error occasionally exceeding 1 mm day−1. The model simulates the approximate magnitude of spring runoff surge, but annual runoff is less than observed (18%–48% less among the continental watersheds). Analysis of precipitation and surface air temperature errors indicates that further improvements in both evapotranspiration and precipitation are needed to simulate well the full annual water cycle

    Hot days and tropical nights in Nigeria: trends and associated large-scale features

    Get PDF
    The impact on society of extreme temperature events is enormous. This study examines the temporal evolution and trends in mean temperatures (minimum temperature, TN and maximum temperature, TX) and warm extremes in Nigeria as well as in three regions in Nigeria (Guinea, Savanna, and Sahel) using homogenized daily TN and TX for the period 1971–2012. Warm extremes are defined as days with TX \u3e 35 °C (HotD) and nights with TN \u3e 20°C (TropN). The modified Mann-Kendall test is used to calculate and assess the statistical significance of trends in the indices. The results at annual and seasonal (JFM, AMJ, JAS, and OND) timescales indicate a significant positive increase in temperatures in Nigeria. The warming in annual and seasonal TN is greater than in TX. The temporal evolution in warm extremes is similar to those of the mean temperatures, with trends in TropN greater than those of the HotD. In all the regions, the temporal patterns of trends in mean temperatures and warm extremes are similar. The indices are characterized by positive trends, with the exception of HotD in Guinea with no data during JAS. Analysis of large-scale atmospheric fields during warm extreme days when both TX and TN exceed their respective 90th percentile thresholds shows that warm extreme days are associated with mid-tropospheric subsidence motion in vertical velocity anomaly that is connected with the core of the thermal low and the net convergent flow. These features are accompanied by positive surface shortwave radiation anomaly coupled with cloud cover reduction

    Putting aquifers into atmospheric simulation models: an example from the Mill Creek Watershed, northeastern Kansas

    Get PDF
    Aquifer–atmosphere interactions can be important in regions where the water table is shallow (\u3c2 m). A shallow water table provides moisture for the soil and vegetation and thus acts as a source term for evapotranspiration to the atmosphere. A coupled aquifer–land surface–atmosphere model has been developed to study aquifer–atmosphere interactions in watersheds, on decadal timescales. A single column vertically discretized atmospheric model is linked to a distributed soil-vegetation–aquifer model. This physically based model was able to reproduce monthly and yearly trends in precipitation, stream discharge, and evapotranspiration, for a catchment in northeastern Kansas. However, the calculated soil moisture tended to drop to levels lower than were observed in drier years. The evapotranspiration varies spatially and seasonally and was highest in cells situated in topographic depressions where the water table is in the root zone. Annually, simulation results indicate that from 5–20% of groundwater supported evapotranspiration is drawn from the aquifer. The groundwater supported fraction of evapotranspiration is higher in drier years, when evapotranspiration exceeds precipitation. A long-term (40 year) simulation of extended drought conditions indicated that water table position is a function of groundwater hydrodynamics and cannot be predicted solely on the basis of topography. The response time of the aquifer to drought conditions was on the order of 200 years indicating that feedbacks between these two water reservoirs act on disparate time scales. With recent advances in the computational power of massively parallel supercomputers, it may soon become possible to incorporate physically based representations of aquifer hydrodynamics into general circulation models (GCM) land surface parameterization schemes

    The impact of greenhouse climate change on the energetics and hydrologic processes of mid-latitude transient eddies

    Get PDF
    Atmospheric transient eddies contribute significantly to mid-latitude energy and water vapor transports. Changes in the global climate, as induced by greenhouse enhancement, will likely alter transient eddy behavior. Unraveling all the feedbacks that occur in general circulation models (GCMs) can be difficult. The transient eddies are isolated from the feedbacks and are focused on the response of the eddies to zonal-mean climate changes that result from CO2-doubling. Using a primitive-equation spectral model, the impact of climate change on the life cycles of transient eddies is examined. Transient eddy behavior in experiments is compared with initial conditions that are given by the zonal-mean climates of the GCMs with current and doubled amounts of CO2. The smaller meridional temperature gradient in a doubled CO2 climate leads to a reduction in eddy kinetic energy, especially in the subtropics. The decrease in subtropical eddy energy is related to a substantial reduction in equatorward flux of eddy activity during the latter part of the life cycle. The reduction in equatorward energy flux alters the moisture cycle. Eddy meridional transport of water vapor is shifted slightly poleward and subtropical precipitation is reduced. The water vapor transport exhibits a relatively small change in magnitude, compared to changes in eddy energy, due to the compensating effect of higher specific humidity in the doubled-CO2 climate. An increase in high-latitude precipitation is related to the poleward shift in eddy water vapor flux. Surface evaporation amplifies climatic changes in water vapor transport and precipitation in the experiments

    Analysis of WRF extreme daily precipitation over Alaska using self-organizing maps

    Get PDF
    We analyze daily precipitation extremes from simulations of a polar-optimized version of the Weather Research and Forecasting (WRF) model. Simulations cover 19 years and use the Regional Arctic System Model (RASM) domain. We focus on Alaska because of its proximity to the Pacific and Arctic oceans; both provide large moisture fetch inland. Alaska\u27s topography also has important impacts on orographically forced precipitation. We use self-organizing maps (SOMs) to understand circulation characteristics conducive for extreme precipitation events. The SOM algorithm employs an artificial neural network that uses an unsupervised training process, which results in finding general patterns of circulation behavior. The SOM is trained with mean sea level pressure (MSLP) anomalies. Widespread extreme events, defined as at least 25 grid points experiencing 99th percentile precipitation, are examined using SOMs. Widespread extreme days are mapped onto the SOM of MSLP anomalies, indicating circulation patterns. SOMs aid in determining high-frequency nodes, and hence, circulations are conducive to extremes. Multiple circulation patterns are responsible for extreme days, which are differentiated by where extreme events occur in Alaska. Additionally, several meteorological fields are composited for nodes accessed by extreme and nonextreme events to determine specific conditions necessary for a widespread extreme event. Individual and adjacent node composites produce more physically reasonable circulations as opposed to composites of all extremes, which include multiple synoptic regimes. Temporal evolution of extreme events is also traced through SOM space. Thus, this analysis lays the groundwork for diagnosing differences in atmospheric circulations and their associated widespread, extreme precipitation events

    Moist Baroclinic Instability in the Presence of Surface–Atmosphere Coupling

    Get PDF
    The influence of convective heating on baroclinic instability in the presence of surface sensible heat and moisture fluxes is investigated. Following previous numerical work, a two-dimensional continuous model on an f plane incorporates diabatic heating effects due to cumulus convection and surface sensible heat flux using parameterizations based on a wave-induced unstable boundary layer and associated moist convective destabilization. The temperature-damping effect of surface sensible heat flux is assumed to decrease exponentially with height, and the vertical distribution of convective heating uses a prescribed profile. The atmosphere is assumed to overlie an oceanic surface. In this configuration, convective heating occurs in the wave’s cold sector. General forms of the dispersion relation and eigenfunction are derived analytically. Results show that the most unstable wave is modified by the effect of convective latent heating. With weak convection, the wave’s structure does not change much, while the wave’s energy generation is hampered by the negative contribution of convection. In the presence of moderate convective heating, although the wave’s energy generation is decreased by convection, the wave adjusts its structure to minimize the negative effect of convection and retain growth. In the region with strong convective heating, convective heating significantly changes the wave’s temperature structure. Above and below the strong heating region, the wave structure still retains some features of the Eady mode. The results have bearing on how the structure of oceanic storms may be altered by convection
    • …
    corecore