21 research outputs found

    Hemodynamic monitoring by intracardiac impedance measured by cardiac resynchronization defibrillators:Evaluation in a controlled clinical setting (BIO.Detect HF II study)

    Get PDF
    Background: In patients with cardiac resynchronization therapy defibrillators (CRT-Ds), intracardiac impedance measured by dedicated CRT-D software may be used to monitor hemodynamic changes. We investigated the relationship of hemodynamic parameters assessed by intracardiac impedance and by echocardiography in a controlled clinical setting. Methods: The study enrolled 68 patients (mean age, 66 ± 9 years; 74% males) at 12 investigational sites. The patients had an indication for CRT-D implantation, New York Heart Association class II/III symptoms, left ventricular ejection fraction 15%–35%, and a QRS duration ≥150 ms. Two months after a CRT-D implantation, hemodynamic changes were provoked by overdrive pacing. Intracardiac impedance was recorded at rest and at four pacing rates ranging from 10 to 40 beats/min above the resting rate. In parallel, echocardiography measurements were performed. We hypothesized that a mean intra-individual correlation coefficient (rmean) between stroke impedance (difference between end-systolic and end-diastolic intracardiac impedance) measured by CRT-D and the aortic velocity time integral (i.e., stroke volume) determined by echocardiography would be significantly larger than 0.65. Results: The hypothesis was evaluated in 40 patients with complete data sets. The rmean was 0.797, with a lower confidence interval bound of 0.709. The study hypothesis was met (p = 0.007). A stepwise reduction of stroke impedance and stroke volume was observed with increasing heart rate. Conclusions: Intracardiac impedance measured by implanted CRT-Ds correlated well with the aortic velocity time integral (stroke volume) determined by echocardiography. The impedance measurements bear potential and are readily available technically, not requiring implantation of additional material beyond standard CRT-D system

    Use of an Atrial Lead with Very Short Tip-To-Ring Spacing Avoids Oversensing of Far-Field R-Wave

    Get PDF
    The AVOID-FFS (Avoidance of Far-Field R-wave Sensing) study aimed to investigate whether an atrial lead with a very short tip-to-ring spacing without optimization of pacemaker settings shows equally low incidence of far-field R-wave sensing (FFS) when compared to a conventional atrial lead in combination with optimization of the programming.Patients receiving a dual chamber pacemaker were randomly assigned to receive an atrial lead with a tip-to-ring spacing of 1.1 mm or a lead with a conventional tip-to-ring spacing of 10 mm. Postventricular atrial blanking (PVAB) was programmed to the shortest possible value of 60 ms in the study group, and to an individually determined optimized value in the control group. Atrial sensing threshold was programmed to 0.3 mV in both groups. False positive mode switch caused by FFS was evaluated at one and three months post implantation.A total of 204 patients (121 male; age 73±10 years) were included in the study. False positive mode switch caused by FFS was detected in one (1%) patient of the study group and two (2%) patients of the control group (p = 0.62).The use of an atrial electrode with a very short tip-to-ring spacing avoids inappropriate mode switch caused by FFS without the need for individual PVAB optimization.ClinicalTrials.gov NCT00512915

    Inappropriate mode switch due to FFS: Stored episode depicting inappropriate mode switch due to FFS from the control group.

    No full text
    <p>Despite optimized PVAB of 140 ms inappropriate mode switch occurs because the coupling interval of the far-field R-wave is 160 ms. First line: bipolar atrial electrogram, shows bipolar atrial, second line: bipolar ventricular electrogram, bottom line: marker channel with AMS = mode switch; AP = atrial pacing; AS = atrial sensed event; AS on black background = atrial sensed event in refractory period; VP = ventricular pacing.</p

    Distribution of programmed PVAB during follow-up by randomization groups.

    No full text
    <p>Nine patients of the study group initially received a PVAB that was erroneously programmed to a value other than 60 ms which was corrected after one month in eight of the patients and remained prolonged in one patient. None of these patients had inappropriate mode switch due to FFS. One patient of the study group patient exhibited inappropriate mode switch due to FFS and the PVAB was then individually optimized (150 ms). For the control group PVAB is shown as determined to be optimal at discharge. In case of changes of the PVAB programming during the follow-up, the longest programmed PVAB for both groups are displayed.</p

    Additional electrodes on the Quartetâ„¢ LV lead provide more programmable pacing options than bipolar and tripolar equivalents

    No full text
    International audienceAIMS: The aim of this study was to evaluate any benefits to the number of viable pacing vectors and maximal spatial coverage with quadripolar left ventricular (LV) leads when compared with tripolar and bipolar equivalents in patients receiving cardiac resynchronization therapy (CRT). METHODS AND RESULTS: A meta-analysis of five previously published clinical trials involving the Quartet™ LV lead (St Jude Medical, St Paul, MN, USA) was performed to evaluate the number of viable pacing vectors defined as capture thresholds ≤2.5 V and no phrenic nerve stimulation and maximal spatial coverage of viable vectors in CRT patients at pre-discharge (n = 370) and first follow-up (n = 355). Bipolar and tripolar lead configurations were modelled by systematic elimination of two and one electrode(s), respectively, from the Quartet lead. The Quartet lead with its four pacing electrodes exhibited the greatest number of pacing vectors per patient when compared with the best bipolar and the best tripolar modelled equivalents. Similarly, the Quartet lead provided the highest spatial coverage in terms of the distance between two furthest viable pacing cathodes when compared with the best bipolar and the best tripolar configurations (P \textless 0.05). Among the three modelled bipolar configurations, the lead configuration with the two most distal electrodes resulted in the highest number of viable pacing vectors. Among the four modelled tripolar configurations, elimination of the second proximal electrode (M3) resulted in the highest number of viable pacing options per patient. There were no significant differences observed between pre-discharge and first follow-up analyses. CONCLUSION: The Quartet lead with its four electrodes and the capability to pace from four anatomical locations provided the highest number of viable pacing vectors at pre-discharge and first follow-up visits, providing more flexibility in device programming and enabling continuation of CRT in more patients when compared with bipolar and tripolar equivalent
    corecore