25 research outputs found

    Two-dimensional Einstein manifolds in geometrothermodynamics

    Get PDF
    We present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular, for systems constrained by the vanishing of the Hessian curvature we write down the systems of partial differential equations. In such a case it is possible to find a subset of solutions lying on a circumference in an abstract space constructed from the first derivatives of the isothermal coordinates. We conjecture that solutions on the characteristic circumference are of physical relevance, separating them from those of pure mathematical interest. We present the case of a one-parameter family of fundamental relations that -- when lying in the circumference -- describe a polytropic fluid

    Counterrotating Dust Disk Around a Schwarzschild Black Hole: New Fully Integrated Explicit Exact Solution

    Get PDF
      The first fully integrated explicit exact solution of Einstein's field equations corresponding to the superposition of a counterrotating dust disk with a central black hole is presented. The obtained solution represents an infinite annular thin disk (a disk with an inner edge) around the Schwarsz-child black hole, and the corresponding to energy-momentum tensor agrees with all the energy conditions. The solution can also be interpreted as des-cribing a thin disk made of two counterrotating dust fluids that are also in agreement with all the energy conditions.   &nbsp

    Exact relativistic models of thin disks around static black holes in a magnetic field

    Full text link
    The exact superposition of a central static black hole with surrounding thin disk in presence of a magnetic field is investigated. We consider two models of disk, one of infinite extension based on a Kuzmin-Chazy-Curzon metric and other finite based on the first Morgan-Morgan disk. We also analyze a simple model of active galactic nuclei consisting of black hole, a Kuzmin-Chazy-Curzon disk and two rods representing jets, in presence of magnetic field. To explain the stability of the disks we consider the matter of the disk made of two pressureless streams of counterrotating charged particles (counterrotating model) moving along electrogeodesic. Using the Rayleigh criterion we derivate for circular orbits the stability conditions of the particles of the streams. The influence of the magnetic field on the matter properties of the disk and on its stability are also analyzed.Comment: 17 pages, 14 figures. arXiv admin note: text overlap with arXiv:gr-qc/0409109 by other author

    A family of relativistic charged thin disks with an inner edge

    Get PDF
    A new family of exact solutions of the Einstein-Maxwell equations for static axially symmetric spacetimes is presented. The metric functions of the solutions are explicitly computed and are simply written in terms of the oblate spheroidal coordinates. The solutions, obtained by applying the Ernst method of complex potentials, describe an infinite family of static charged dust disks with an inner edge. The energy density, pressure and charge density of all the disks of the family are everywhere well behaved, in such a way that the energy-momentum tensor fully agrees with all the energy conditions.   A new family of exact solutions of the Einstein-Maxwell equations for static axially symmetric spacetimes is presented. The metric functions of the solutions are explicitly computed and are simply written in terms of the oblate spheroidal coordinates. The solutions, obtained by applying the Ernst method of complex potentials, describe an infinite family of static charged dust disks with an inner edge. The energy density, pressure and charge density of all the disks of the family are everywhere well behaved, in such a way that the energy-momentum tensor fully agrees with all the energy conditions.  &nbsp

    A family of relativistic charged thin disks with an inner edge

    Get PDF
    A new family of exact solutions of the Einstein-Maxwell equations for static axially symmetric spacetimes is presented. The metric functions of the solutions are explicitly computed and are simply written in terms of the oblate spheroidal coordinates. The solutions, obtained by applying the Ernst method of complex potentials, describe an infinite family of static charged dust disks with an inner edge. The energy density, pressure and charge density of all the disks of the family are everywhere well behaved, in such a way that the energy-momentum tensor fully agrees with all the energy conditions.   A new family of exact solutions of the Einstein-Maxwell equations for static axially symmetric spacetimes is presented. The metric functions of the solutions are explicitly computed and are simply written in terms of the oblate spheroidal coordinates. The solutions, obtained by applying the Ernst method of complex potentials, describe an infinite family of static charged dust disks with an inner edge. The energy density, pressure and charge density of all the disks of the family are everywhere well behaved, in such a way that the energy-momentum tensor fully agrees with all the energy conditions.  &nbsp

    Relativistic static thin dust disks with an inner edge: An infinite family of new exact solutions

    Full text link
    An infinite family of new exact solutions of the Einstein vacuum equations for static and axially symmetric spacetimes is presented. All the metric functions of the solutions are explicitly computed and the obtained expressions are simply written in terms of oblate spheroidal coordinates. Furthermore, the solutions are asymptotically flat and regular everywhere, as it is shown by computing all the curvature scalars. These solutions describe an infinite family of thin dust disks with a central inner edge, whose energy densities are everywhere positive and well behaved, in such a way that their energy-momentum tensor are in fully agreement with all the energy conditions. Now, although the disks are of infinite extension, all of them have finite mass. The superposition of the first member of this family with a Schwarzschild black hole was presented previously [G. A. Gonz\'alez and A. C. Guti\'errez-Pi\~neres, arXiv: 0811.3002v1 (2008)], whereas that in a subsequent paper a detailed analysis of the corresponding superposition for the full family will be presented.Comment: 9 pages, 3 figure

    Finite axisymmetric charged dust disks in conformastatic spacetimes

    Full text link
    An infinite family of axisymmetric charged dust disks of finite extension is presented. The disks are obtained by solving the vacuum Einstein-Maxwell equations for conformastatic spacetimes, which are characterized by only one metric function. In order to obtain the solutions, it is assumed that the metric function and the electric potential are functionally related and that the metric function is functionally dependent of another auxiliary function, which is taken as a solution of Laplace equation. The solutions for the auxiliary function are then taken as given by the infinite family of generalized Kalnajs disks recently obtained by Gonz\'alez and Reina (MNRAS 371, 1873, 2006), which is expressed in terms of the oblate spheroidal coordinates and represents a well behaved family of finite axisymmetric flat galaxy models. The so obtained relativistic thin disks have then a charge density that is equal, except maybe by a sign, to their mass density, in such a way that the electric and gravitational forces are in exact balance. The energy density of the disks is everywhere positive and well behaved, vanishing at the edge. Accordingly, as the disks are made of dust, their energy-momentum tensor it agrees with all the energy conditions.Comment: Submitted to PR

    Electromagnetic sources distributed on shells in a Schwarzschild background

    Full text link
    In the Introduction we briefly recall our previous results on stationary electromagnetic fields on black-hole backgrounds and the use of spin-weighted spherical harmonics. We then discuss static electric and magnetic test fields in a Schwarzschild background using some of these results. As sources we do not consider point charges or current loops like in previous works, rather, we analyze spherical shells with smooth electric or magnetic charge distributions as well as electric or magnetic dipole distributions depending on both angular coordinates. Particular attention is paid to the discontinuities of the field, of the 4-potential, and their relation to the source.Comment: dedicated to Professor Goldberg's 86th birthday, accepted for publication in Gen. Relat. Gravit., 12 page
    corecore