561 research outputs found

    Documento de consenso interdisciplinar de expertos en el manejo de la disección aórtica tipo B: comentarios y novedades a la luz del INSTEAD-XL

    Get PDF
    ResumenAnte la ausencia de evidencia científica sólida, un comité de expertos europeos ha publicado en la revista Journal of the American College of Cardiology un documento de consenso sobre el manejo de los diferentes subgrupos de pacientes con disección aórtica tipo B. Este documento está basado en un metaanálisis que recopila toda la experiencia publicada en los últimos años sobre disección aórtica tipo B, incluyendo a más de 6.700 pacientes.A pesar de su mejor pronóstico en fase aguda que la disección aórtica tipo A, la disección aórtica tipo B presenta un mal pronóstico a medio y largo plazo. El manejo limitado al tratamiento médico con control estricto de la presión arterial y el tratamiento de los casos complicados mediante cirugía abierta o técnicas endovasculares está sometido a controversia, especialmente por la disponibilidad y los buenos resultados de las técnicas endovasculares. Este documento pretende apoyar a los cirujanos o médicos que tratan la disección aórtica tipo B, estableciendo algunos algoritmos de manejo.Recogemos en este artículo las conclusiones y los datos fundamentales de este documento de consenso.La aparición posterior de los resultados a 5 años del estudio INSTEAD añaden una fuerte evidencia científica en contra de alguna de las principales conclusiones alcanzadas en este consenso y retan este consenso logrado solamente un año antes.AbstractDue to a lack of solid scientific evidence, an european experts committee have published in Journal of the American College of Cardiology an consensus document about the management of different subgroups of patients with type B aortic dissection. This document is based on a meta-analisys including the recent published experience that includes more than 6700 patients with type B aortic dissection.In spite of the better prognosis compared to type A dissection in the short term, type B dissection has a bad long term prognosis. The conservative management limited to tight blood pressure control and close surveillance to treat complicated cases with open surgery or endovascular therapy is under discussion, specially due to the feasibility and good results of endovascular technique. This consensus intends to support surgeons or doctors who deal with type B dissection and stablishs some management algorithm.We present in this article the conclusions and main data from this consensus document.The posterior publication of 5 years results of INSTEAD study adds an strong scientific evidence against some of this consensus principal conclusions and challenge the consensus just one year later

    Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition

    Get PDF
    Recent discoveries of polaritons in van der Waals (vdW) crystals with directional in-plane propagation, ultra-low losses, and broad spectral tunability have opened the door for unprecedented manipulation of the flow of light at the nanoscale. However, despite their extraordinary potential for nano-optics, these unique polaritons also present an important limitation: their directional propagation is intrinsically determined by the crystal structure of the host material, which imposes forbidden directions of propagation and hinders its control. Here, we theoretically predict and experimentally demonstrate that directional polaritons (in-plane hyperbolic phonon polaritons) in a vdW biaxial slab (alpha-phase molybdenum trioxide) can be steered along previously forbidden directions by inducing an optical topological transition, which naturally emerges when placing the slab on a substrate with a given negative permittivity (4H-SiC). Importantly, due to the low-loss nature of this topological transition, we are able to visualize in real space exotic intermediate polaritonic states between mutually orthogonal hyperbolic regimes, which permit to unveil the unique topological origin of the transition. This work provides new insights into the emergence of low-loss optical topological transitions in vdW crystals, offering a novel route to efficiently steer the flow of energy at the nanoscale

    Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition

    Get PDF
    Polaritons with directional in-plane propagation and ultralow losses in van der Waals (vdW) crystals promise unprecedented manipulation of light at the nanoscale. However, these polaritons present a crucial limitation: their directional propagation is intrinsically determined by the crystal structure of the host material, imposing forbidden directions of propagation. Here, we demonstrate that directional polaritons (in-plane hyperbolic phonon polaritons) in a vdW crystal (α-phase molybdenum trioxide) can be directed along forbidden directions by inducing an optical topological transition, which emerges when the slab is placed on a substrate with a given negative permittivity (4H–silicon carbide). By visualizing the transition in real space, we observe exotic polaritonic states between mutually orthogonal hyperbolic regimes, which unveil the topological origin of the transition: a gap opening in the dispersion. This work provides insights into optical topological transitions in vdW crystals, which introduce a route to direct light at the nanoscale

    Iron–Gold Nanoflowers: A Promising Tool for Multimodal Imaging and Hyperthermia Therapy

    Get PDF
    The development of nanoplatforms prepared to perform both multimodal imaging and combined therapies in a single entity is a fast-growing field. These systems are able to improve diagnostic accuracy and therapy success. Multicomponent Nanoparticles (MCNPs), composed of iron oxide and gold, offer new opportunities for Magnetic Resonance Imaging (MRI) and Computed To-mography (CT) diagnosis, as well as combined therapies based on Magnetic Hyperthermia (MH) and Photothermal Therapy (PT). In this work, we describe a new seed-assisted method for the synthesis of Au@Fe Nanoparticles (NPs) with a flower-like structure. For biomedical purposes, Au@Fe NPs were functionalized with a PEGylated ligand, leading to high colloidal stability. Moreover, the as-obtained Au@Fe-PEG NPs exhibited excellent features as both MRI and CT Contrast Agents (CAs), with high r2 relaxivity (60.5 mM-1·s-1 ) and X-ray attenuation properties (8.8 HU mM-1·HU). In addition, these nanoflowers presented considerable energy-to-heat conversion under both Alternating Magnetic Fields (AMFs) (¿T ˜ 2.5¿C) and Near-Infrared (NIR) light (¿T ˜ 17¿C). Finally, Au@Fe-PEG NPs exhibited very low cytotoxicity, confirming their potential for theranostics applications. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Extracting the infrared permittivity of SiO2 substrates locally by near-field imaging of phonon polaritons in a van der Waals crystal

    Get PDF
    Layered materials in which individual atomic layers are bonded by weak van der Waals forces (vdW materials) constitute one of the most prominent platforms for materials research. Particularly, polar vdW crystals, such as hexagonal boron nitride (h-BN), alpha-molybdenum trioxide (α-MoO3) or alpha-vanadium pentoxide (α-V2O5), have received significant attention in nano-optics, since they support phonon polaritons (PhPs)―light coupled to lattice vibrations― with strong electromagnetic confinement and low optical losses. Recently, correlative far- and near-field studies of α-MoO3 have been demonstrated as an effective strategy to accurately extract the permittivity of this material. Here, we use this accurately characterized and low-loss polaritonic material to sense its local dielectric environment, namely silica (SiO2), one of the most widespread substrates in nanotechnology. By studying the propagation of PhPs on α-MoO3 flakes with different thicknesses laying on SiO2 substrates via near-field microscopy (s-SNOM), we extract locally the infrared permittivity of SiO2. Our work reveals PhPs nanoimaging as a versatile method for the quantitative characterization of the local optical properties of dielectric substrates, crucial for understanding and predicting the response of nanomaterials and for the future scalability of integrated nanophotonic devices

    Influence of backbone curvature on the organic electrochemical transistor performance of glycolated donor–acceptor conjugated polymers

    Get PDF
    Two new glycolated semiconducting polymers PgBT(F)2gT and PgBT(F)2gTT of differing backbone curvatures were designed and synthesised for application as p-type accumulation mode organic electrochemical transistor (OECT) materials. Both polymers demonstrated stable and reversible oxidation, accessible within the aqueous electrochemical window, to generate polaronic charge carriers. OECTs fabricated from PgBT(F)2gT featuring a curved backbone geometry attained a higher volumetric capacitance of 170 F cm−3. However, PgBT(F)2gTT with a linear backbone displayed overall superior OECT performance with a normalised peak transconductance of 3.00×104 mS cm−1, owing to its enhanced order, expediting the charge mobility to 0.931 cm2 V−1 s−1

    Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas

    Get PDF
    Phonon polaritons (PhPs),light coupled to lattice vibrations,with in-plane hyperbolic dispersion exhibit ray-like propagation with large wavevectors and enhanced density of optical states along certain directions on a surface. As such, they have raised a surge of interest as they promise unprecedented possibilities for the manipulation of infrared light with planar circuitry and at the nanoscale. Here, we demonstrate, for the first time, the focusing of in-plane hyperbolic PhPs propagating along thin slabs of MoO3. To that end, we developed metallic nanoantennas of convex geometries for both the efficient launching and focusing of the polaritons. Remarkably, the foci obtained exhibit enhanced near-field confinement and absorption compared to foci produced by in-plane isotropic PhPs. More intriguingly, foci sizes as small as lamdap/5 =lamda0/50 were achieved (lamdap is the polariton wavelength and lamda0 the photon wavelength). Focusing of in-plane hyperbolic polaritons introduces a first and most basic building block developing planar polariton optics utilizing in-plane anisotropic van der Waals materials and metasurfaces

    Planar refraction and lensing of highly confined polaritons in anisotropic media

    Get PDF
    Refraction between isotropic media is characterized by light bending towards the normal to the boundary when passing from a low- to a high-refractive-index medium. However, refraction between anisotropic media is a more exotic phenomenon which remains barely investigated, particularly at the nanoscale. Here, we visualize and comprehensively study the general case of refraction of electromagnetic waves between two strongly anisotropic (hyperbolic) media, and we do it with the use of nanoscale-confined polaritons in a natural medium: alpha-MoO3. The refracted polaritons exhibit non-intuitive directions of propagation as they traverse planar nanoprisms, enabling to unveil an exotic optical effect: bending-free refraction. Furthermore, we develop an in-plane refractive hyperlens, yielding foci as small as lambdap/6, being lambdap the polariton wavelength (lambda0/50 compared to the wavelength of free-space light). Our results set the grounds for planar nano-optics in strongly anisotropic media, with potential for effective control of the flow of energy at the nanoscale.G.Á.-P. and J.T.-G. acknowledge support through the Severo Ochoa Program from the Government of the Principality of Asturias (nos. PA-20-PF-BP19-053 and PA-18-PF-BP17-126, respectively). S.X. acknowledges the support from Independent Research Fund Denmark (Project No. 9041-00333B). B.C. acknowledges the support from VILLUM FONDEN (No. 00027987). The Center for Nanostructured Graphene is sponsored by the Danish National Research Foundation (Project No. DNRF103.) K.V.V. and V.S.V. gratefully acknowledge the financial support from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-606). J.M.-S. acknowledges financial support through the Ramón y Cajal Program from the Government of Spain (RYC2018-026196-I). A.Y.N. and J.I.M. acknowledge the Spanish Ministry of Science, Innovation and Universities (national projects MAT201788358-C3-3-R and PID2019-104604RB/AEI/10.13039/501100011033). R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (national project RTI2018-094830-B-100 and the project MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program) and the Basque Government (grant No. IT1164-19). A.Y.N. also acknowledges the Basque Department of Education (grant no. PIBA-2020-1-0014). P.A.-G. acknowledges support from the European Research Council under starting grant no. 715496, 2DNANOPTICA and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-111156GB-I00)

    Negative reflection of nanoscale-confined polaritons in a low-loss natural medium

    Get PDF
    7 pags., 4 figs.Negative reflection occurs when light is reflected toward the same side of the normal to the boundary from which it is incident. This exotic optical phenomenon is not only yet to be visualized in real space but also remains unexplored, both at the nanoscale and in natural media. Here, we directly visualize nanoscale-confined polaritons negatively reflecting on subwavelength mirrors fabricated in a low-loss van der Waals crystal. Our near-field nanoimaging results unveil an unconventional and broad tunability of both the polaritonic wavelength and direction of propagation upon negative reflection. On the basis of these findings, we introduce a device in nano-optics: a hyperbolic nanoresonator, in which hyperbolic polaritons with different momenta reflect back to a common point source, enhancing the intensity. These results pave way to realize nanophotonics in low-loss natural media, providing an efficient route to control nanolight, a key for future on-chip optical nanotechnologies.G.Á.-P. and J.T.-G. acknowledge support through the Severo Ochoa Program from the Government of the Principality of Asturias (grant numbers PA-20-PF-BP19-053 and PA-18-PF-BP17-126, respectively). Q.O. acknowledges support from the Australian Research Council (ARC; CE170100039 and DE220100154). This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). hBN crystal growth was supported by the National Science Foundation award number CMMI 1538127. V.G. acknowledges the Ministerio de Ciencia, Innovación y Universidades through the grant MELODIA (PGC2018-095777-B-C21). V.G. thanks the “ENSEMBLE 3–Centre of Excellence for nanophotonics, advanced materials and novel crystal growth-based technologies” project (GA no. MAB/2020/14) carried out within the International Research Agendas program of the Foundation for Polish Science cofinanced by the European Union under the European Regional Development Fund and the European Union’s Horizon 2020 research and innovation programme Teaming for Excellence (GA no. 857543) for support of this work. R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (national project RTI2018-094830-B-100 and the project MDM-2016-0618 of the María de Maeztu Units of Excellence Program) and the Basque Government (grant no. IT1164-19). J.M.-S. acknowledges financial support from the Ramón y Cajal Program of the Government of Spain and FSE (RYC2018-026196-I) and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-110308GA-I00). A.Y.N. acknowledges the Spanish Ministry of Science and Innovation (grants MAT201788358-C3-3-R and PID2020-115221GB-C42) and the Basque Department of Education (grant PIBA-2020-1-0014). P.A.-G. acknowledges support from the European Research Council under starting grant no. 715496, 2DNANOPTICA and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-111156GB-I00). Q.B. acknowledges the support from Shenzhen Nanshan District Pilotage Team Program (LHTD20170006)
    corecore