6,839 research outputs found

    Critical Comparison of Assessment Codes for Steel Moment Resisting Frames

    Get PDF
    Many existing steel multi-storey frame buildings worldwide were designed prior to the introduction of modern seismic design provisions or based on outdated hazard maps considering low values of seismic intensity. This often resulted in buildings showing low performances with respect to earthquake loads. Assessment codes, such as the Eurocode 8 Part 3 and the ASCE 41, have been conceived to provide tools to assess the seismic performance of existing structures, to evaluate their adequacy with respect to the current safety standards and the need for seismic retrofit. However, recent research studies have revealed the necessity for a revision of these codes. In particular, for steel moment resisting frames, the current European regulation shares many similarities with older versions of the American codes, but has failed to incorporate changes based on the state-of-the-art knowledge. In addition, the undergoing update of other parts of the Eurocode motivates a full revision of the current standards. This paper compares the assessment procedures of the European and American codes. Two low-code steel Moment Resisting Frames were considered for case study purposes and the assessment was performed based on three local Engineering Demand Parameters (EDPs), i.e., column’s rotation, beam’s rotation and panel zone’s shear distortion, and the inter-story drift as global EDP. Incremental Dynamic Analyses were performed for the development of component and system fragility curves. The present work aims to identify some challenges and to provide some preliminary insights for the revision of the Eurocode 8 Part 3

    Wannier-Stark ladders in one-dimensional elastic systems

    Full text link
    The optical analogues of Bloch oscillations and their associated Wannier-Stark ladders have been recently analyzed. In this paper we propose an elastic realization of these ladders, employing for this purpose the torsional vibrations of specially designed one-dimensional elastic systems. We have measured, for the first time, the ladder wave amplitudes, which are not directly accessible either in the quantum mechanical or optical cases. The wave amplitudes are spatially localized and coincide rather well with theoretically predicted amplitudes. The rods we analyze can be used to localize different frequencies in different parts of the elastic systems and viceversa.Comment: 10 pages, 6 figures, accepted in Phys. Rev. Let

    Single-bubble and multi-bubble cavitation in water triggered by laser-driven focusing shock waves

    Full text link
    In this study a single laser pulse spatially shaped into a ring is focused into a thin water layer, creating an annular cavitation bubble and cylindrical shock waves: an outer shock that diverges away from the excitation laser ring and an inner shock that focuses towards the center. A few nanoseconds after the converging shock reaches the focus and diverges away from the center, a single bubble nucleates at the center. The inner diverging shock then reaches the surface of the annular laser-induced bubble and reflects at the boundary, initiating nucleation of a tertiary bubble cloud. In the present experiments, we have performed time-resolved imaging of shock propagation and bubble wall motion. Our experimental observations of single-bubble cavitation and collapse and appearance of ring-shaped bubble clouds are consistent with our numerical simulations that solve a one dimensional Euler equation in cylindrical coordinates. The numerical results agree qualitatively with the experimental observations of the appearance and growth of bubble clouds at the smallest laser excitation rings. Our technique of shock-driven bubble cavitation opens novel perspectives for the investigation of shock-induced single-bubble or multi-bubble cavitation phenomena in thin liquids
    • …
    corecore