20 research outputs found

    Crop Updates 2001 - Cereals

    Get PDF
    This session covers forty two papers from different authors: PLENARY 1. Planning your cropping program in season 2001, Dr Ross Kingwell, Agriculture Western Australia and University of Western Australia WORKSHOP 2. Can we produce high yields without high inputs? Wal Anderson, Centre for Cropping Systems, Agriculture Western Australia VARIETIES 3. Local and interstate wheat variety performance and $ return to WA growers, Eddy Pol, Peter Burgess and Ashley Bacon, Agritech Crop Research CROP ESTABLISHMENT 4 Soil management of waterlogged soils, D.M. Bakker, G.J. Hamilton, D. Houlbrooke and C. Spann, Agriculture Western Australia 5. Effect of soil amelioration on wheat yield in a very dry season, M.A Hamza and W.K. Anderson, Agriculture Western Australia 6. Fuzzy tramlines for more yield and less weed, Paul Blackwell1 and Maurice Black2 1Agriculture Western Australia, 2Harbour Lights Estate, Geraldton 7. Tramline farming for dollar benefits, Paul Blackwell, Agriculture Western Australia NUTRITION 8. Soil immobile nutrients for no-till crops, M.D.A. Bolland1, R.F. Brennan1,and W.L. Crabtree2, 1Agriculture Western Australia, 2Western Australian No-Tillage Farmers Association 9. Burn stubble windrows: to diagnose soil fertility problems, Bill Bowden, Chris Gazey and Ross Brennan, Agriculture Western Australia 10. Calcium: magnesium ratios; are they important? Bill Bowden1, Rochelle Strahan2, Bob Gilkes2 and Zed Rengel2 1Agriculture Western Australia, 2Department of Soil Science and Plant Nutrition, UWA 11. Responses to late foliar applications of Flexi-N, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 12. A comparison of Flexi-N placements, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 13. What is the best way to apply potassium? Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, CSBP futurefarm 14. Claying affects potassium nutrition in barley, Stephen Loss, David Phelps, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 15. Nitrogen and potassium improve oaten hay quality, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm AGRONOMY 16. Agronomic responses of new wheat varieties in the northern wheatbelt, Darshan Sharma and Wal Anderson, Agriculture Western Australia 17. Wheat agronomy research on the south coast, Mohammad Amjad and Wal Anderson, Agriculture Western Australia 18. Influence of sowing date on wheat yield and quality in the south coast environment, Mohammad Amjadand Wal Anderson, Agriculture Western Australia 19. More profit from durum, Md.Shahajahan Miyan and Wal Anderson, Agriculture Western Australia 20. Enhancing recommendations of flowering and yield in wheat, JamesFisher1, Senthold Asseng2, Bill Bowden1 and Michael Robertson3 ,1AgricultureWestern Australia, 2CSIRO Plant Industry, 3CSIRO Sustainable Ecosystems 21. When and where to grow oats, Glenn McDonald, Agriculture Western Australia 22. Managing Gaidner barley for quality, Kevin Young and Blakely Paynter, Agriculture Western Australia PESTS AND DISEASES 23. Strategies for leaf disease management in wheat, Jatinderpal Bhathal1, Cameron Weeks2, Kith Jayasena1 and Robert Loughman1 ,1Agriculture Western Australia. 2Mingenew-Irwin Group Inc 24. Strategies for leaf disease management in malting barley, K. Jayasena1, Q. Knight2 and R. Loughman1, 1Agriculture Western Australia, 2IAMA Agribusiness 25. Cereal disease diagnostics, Dominie Wright and Nichole Burges, Agriculture Western Australia 26. The big rust: Did you get your money back!! Peter Burgess, Agritech Crop Research 27. Jockey – winning the race against disease in wheat, Lisa-Jane Blacklow, Rob Hulme and Rob Giffith, Aventis CropScience 28. Distribution and incidence of aphids and barley yellow dwarf virus in over-summering grasses in WA wheatbelt, Jenny Hawkes and Roger Jones, CLIMA and Agriculture Western Australia 29. Further developments in forecasting aphid and virus risk in cereals, Debbie Thackray, Jenny Hawkes and Roger Jones, Agriculture Western Australia and Centre for Legumes in Mediterranean Agriculture 30. Effect of root lesion nematodes on wheat yields in Western Australia, S. B. Sharma, S. Kelly and R. Loughman, Crop Improvement Institute, Agriculture Western Australia 31. Rotational crops and varieties for management of root lesion nematodes in Western Australia, S.B. Sharma, S. Kelly and R. Loughman, Crop Improvement Institute, Agriculture Western Australia WEEDS 32. Phenoxy herbicide tolerance of wheat, Peter Newman and Dave Nicholson, Agriculture Western Australia 33. Tolerance of wheat to phenoxy herbicides,Harmohinder S. Dhammu, Terry Piper and Mario F. D\u27Antuono, Agriculture Western Australia 34. Herbicide tolerance of durum wheats, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Agriculture Western Australia 35. Herbicide tolerance of new wheats, Harmohinder S. Dhammu, Terry Piper and David F. Nicholson, Agriculture Western Australia BREEDING 36. Towards molecular breeding of barley: construction of a molecular genetic map, Mehmet Cakir1, Nick Galwey1, David Poulsen2, Garry Ablett3, Reg Lance4, Rob Potter5 and Peter Langridge6,1Plant Sciences, Faculty of Agriculture, UWA, 2Queensland Department of Primary Industries, Qld, 3Centre for Plant Conservation Genetics Southern Cross University, Lismore NSW, 5SABC Murdoch University, WA, 6Department of Plant Science University of Adelaide, Glen Osmond SA 37. Toward molecular breeding of barley: Identifying markers linked to genes for quantitative traits, Mehmet Cakir1, Nick Galwey1, David Poulsen2, Reg Lance3, Garry Ablett4, Greg Platz2, Joe Panozzo5, Barbara Read6, David Moody5, Andy Barr7 and Peter Langridge7 , 1Plant Sciences, Faculty of Agriculture, UWA, 2Queensland Department of Primary Industries, Warwick, QLD,3Agriculture Western Australia, 4Centre for Plant Conservation Genetics, Southern Cross University, Lismore NSW, 5VIDA Private Bag 260, Horsham VIC, 6NSW Dept. of Agriculture, Wagga Wagga NSW, 7Department of Plant Science, University of Adelaide, Glen Osmond SA 38. Can we improve grain yield by breeding for greater early vigour in wheat? Tina Botwright1, Tony Condon1, Robin Wilson2 and Iain Barclay2, 1CSIRO Plant Industry, 2Agriculture Western Australia MARKETING AND QUALITY 39. The Crop Improvement Royalty, Howard Carr, Agriculture Western Australia 40. GrainGuardÔ - The development of a protection plan for the wheat industry, Greg Shea, Agriculture Western Australia CLIMATE 41. Rainfall – what happened in 2000 and the prospects for 2001, Ian Foster, Agriculture Western Australia 42. Software for climate management issues, David Tennant,Agriculture Western Australia CONTRIBUTING AUTHOR CONTACT DETAIL

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Platform Competition with Endogenous Multihoming

    Full text link

    Os acordes de Yes we can do vídeo da campanha presidencial de Barak Obama The Yes we can chords

    No full text
    Estudo sobre o loop de quatro acordes &#9553;: Sol Maior - Si Maior - Mi Menor - Dó Maior :&#9553; na canção Yes we can [Sim, nós podemos] do vídeo de Will.i.am (ADAMS, 2008) lançado durante a campanha presidencial de Barack Obama nos Estados Unidos. A partir da identificação de IOCMs (Materiais Interobjetivos de Comparação) e PMFCs (Campos Paramusicais Conotativos) da análise musemática (TAGG, 2009), compara-se Yes we can com materiais harmônicos, melódicos, rítmicos, de instrumentação e de letras de canções populares da tradição afro-britânico-americana, levando-se também em consideração as atitudes de relevantes compositores e intérpretes populares social e politicamente engajados.<br>Study of the four-chord loop &#9553;: G - B - Em - C :&#9553; in the song Yes We Can from the video by Will.i.am (ADAMS, 2008) released during the 2008 US presidential campaign of Barack Obama. Departing from IOCM and PMFC identification of the musematic analysis (TAGG, 2009), Yes We Can is compared to harmony, melody, rhythm, instrumentation and lyrics found in iconic popular songs of the Afro-Bristish-American tradition, also taking into consideration the attitudes of relevant composers and performers engaged in social and political issues

    Growing hardy kiwifruit in the home garden

    No full text
    Native to the forests of eastern Asia, about 80 species of Actinidia are known. Two of these, A. kolomikta and A. arguta can be grown in Minnesota and similar regions, and produce delicious, grape-sized berries with a flavor similar to grocery store kiwifruit though somewhat sweeter. This article provides information for home gardeners who are interested in growing this plant
    corecore