94 research outputs found

    Discrete model for laser driven etching and microstructuring of metallic surfaces

    Full text link
    We present a unidimensional discrete solid-on-solid model evolving in time using a kinetic Monte Carlo method to simulate micro-structuring of kerfs on metallic surfaces by means of laser-induced jet-chemical etching. The precise control of the passivation layer achieved by this technique is responsible for the high resolution of the structures. However, within a certain range of experimental parameters, the microstructuring of kerfs on stainless steel surfaces with a solution of H3PO4\mathrm{H}_3\mathrm{PO}_4 shows periodic ripples, which are considered to originate from an intrinsic dynamics. The model mimics a few of the various physical and chemical processes involved and within certain parameter ranges reproduces some morphological aspects of the structures, in particular ripple regimes. We analyze the range of values of laser beam power for the appearance of ripples in both experimental and simulated kerfs. The discrete model is an extension of one that has been used previously in the context of ion sputtering and is related to a noisy version of the Kuramoto-Sivashinsky equation used extensively in the field of pattern formation.Comment: Revised version. Etching probability distribution and new simulations adde

    Serum amyloid A (SAA): a novel biomarker for uterine serous papillary cancer

    Get PDF
    BACKGROUND: Uterine serous papillary carcinoma (USPC) is a biologically aggressive variant of endometrial cancer. We investigated the expression of Serum Amyloid A (SAA) and evaluated its potential as a serum biomarker in USPC patients. METHODS: SAA gene and protein expression levels were evaluated in USPC and normal endometrial tissues (NEC) by real-time PCR, immunohistochemistry (IHC), flow cytometry and by a sensitive bead-based immunoassay. SAA concentration in 123 serum samples from 51 healthy women, 42 women with benign diseases, and 30 USPC patients were also studied. RESULTS: SAA gene expression levels were significantly higher in USPC when compared with NEC (mean copy number by RT\u2013PCR\ubc162 vs 2.21; P\ubc0.0002). IHC revealed diffuse cytoplasmic SAA protein staining in USPC tissues. High intracellular levels of SAA were identified in primary USPC cell lines evaluated by flow cytometry and SAA was found to be actively secreted in vitro. SAA concentrations (mgml 1) had a median (95% CIs) of 6.0 (4.0\u20138.9) in normal healthy females and 6.0 (4.2\u20138.1) in patients with benign disease (P\ubc0.92). In contrast, SAA values in the serum of USPC patients had a median (95% CI) of 15.6 (9.2\u201356.2), significantly higher than those in the healthy group (P\ubc0.0005) and benign group (P\ubc0.0006). Receiver operating characteristics (ROC) analysis of serum SAA to classify advanced- and early-stage USPC yielded an area under the ROC curve of 0.837 (P\ubc0.0024). CONCLUSION: SAA is not only a liver-secreted protein but is also a USPC cell product. SAA may represent a novel biomarker for USPC to assist in staging patients preoperatively, and to monitor early-disease recurrence and response to therapy

    Intestinal Epithelial Serum Amyloid A Modulates Bacterial Growth In Vitro and Pro-Inflammatory Responses in Mouse Experimental Colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum Amyloid A (SAA) is a major acute phase protein of unknown function. SAA is mostly expressed in the liver, but also in other tissues including the intestinal epithelium. SAA reportedly has anti-bacterial effects, and because inflammatory bowel diseases (IBD) result from a breakdown in homeostatic interactions between intestinal epithelia and bacteria, we hypothesized that SAA is protective during experimental colitis.</p> <p>Methods</p> <p>Intestinal SAA expression was measured in mouse and human samples. Dextran sodium sulfate (DSS) colitis was induced in SAA 1/2 double knockout (DKO) mice and in wildtype controls. Anti-bacterial effects of SAA1/2 were tested in intestinal epithelial cell lines transduced with adenoviral vectors encoding the CE/J SAA isoform or control vectors prior to exposure to live <it>Escherichia coli</it>.</p> <p>Results</p> <p>Significant levels of SAA1/SAA2 RNA and SAA protein were detected by in situ hybridization and immunohistochemistry in mouse colonic epithelium. SAA3 expression was weaker, but similarly distributed. SAA1/2 RNA was present in the ileum and colon of conventional mice and in the colon of germfree mice. Expression of SAA3 was strongly regulated by bacterial lipopolysaccharides in cultured epithelial cell lines, whereas SAA1/2 expression was constitutive and not LPS inducible. Overexpression of SAA1/2 in cultured epithelial cell lines reduced the viability of co-cultured <it>E. coli</it>. This might partially explain the observed increase in susceptibility of DKO mice to DSS colitis. SAA1/2 expression was increased in colon samples obtained from Crohn's Disease patients compared to controls.</p> <p>Conclusions</p> <p>Intestinal epithelial SAA displays bactericidal properties in vitro and could play a protective role in experimental mouse colitis. Altered expression of SAA in intestinal biopsies from Crohn's Disease patients suggests that SAA is involved in the disease process..</p

    GENERAL INTRODUCTORY SESSIONTECHNIQUES AND RESULTS OF HEAT PULSE EXPERIMENTS

    No full text
    A general review of experimental heat pulse techniques with interpretations of some typical data is given. Several heat pulse generators are described including thin films utilizing pulsed currents, tunnel junctions and superconducting films in which the down-conversion of high frequency phonons occurs. The black body radiation model will be reviewed and related to the temperature of the pulsed current generator and the resulting phonon propagation. A brief review of heat pulse detectors will be given in order to characterize their properties as a function of temperature and magnetic field. Results of heat pulse experiments will be presented by interpreting several portions of some detected heat pulse signals including [1] the ballistic region and the relation between the energy and phase velocities [2], the second sound regime (if any) and its relation to normal and umklapp scattering rates [3], the scattered or diffusive portions and their relation to crystal defects and phonon polarization. Of the specific examples of scattering to be discussed, emphasis will be on phonon scattering in Ge due to donor impurities

    Thermoelastic Structures for High Density Ultrasonic Energy

    No full text
    The use of lasers to generate thermoelastic waves has received considerable attention since the publication of the theoretical work of White.1 The author derives equations for the propagation of longitudinal elastic waves produced by surface heating of a semi-infinite medium with harmonic thermal (laser) excitation. The importance of the boundary conditions in determining the magnitude of the resulting elastic waves is described. Two conditions are imposed and the resulting amplitudes derived: (1) Laser absorption at x = 0 with elastic amplitude u=0 at x = 0 for all times t ≥ 0 (perfectly clamped or constrained surface) and (2) for the stress σ = 0 at x = 0 for t ≥ 0 (free surface). Propagation of the elastic wave is in the x direction.</p

    Investigation of Laser‐Enhanced Electroplating Mechanisms

    No full text

    STUDIES OF SAPPHIRE PHOTOABLATION BY LASER-INDUCED FLUORESCENCE AND PHOTOTHERMAL DEFORMATION MEASUREMENTS

    No full text
    Crystalline sapphire displays a low, 0.6 J/CM2, threshold for etching with 193 nm excimer pulses. Understanding this low-threshold etching involves knowledge of the pathways by which laser energy gives rise to material removal. An accurate knowledge of surface temperature during irradiation appears sufficient to differentiate between classical thermal vaporization and electronic, I.E. photochemical mechanisms for etching
    corecore