28 research outputs found

    The Influence of Climate on Root Depth: A Carbon Cost-Benefit Analysis

    Get PDF
    The depth of the active root zone identifies the portion of the subsurface that exchanges soil water with the atmosphere. The depth of this zone is determined by a number of factors, and this work focuses on the drivers related to water and climate. An analytical expression for a water-optimal root depth is developed by equating the marginal carbon cost and benefit of deeper roots. Soil-moisture dynamics are driven by stochastic rainfall, and the predicted root depth is a function climate, soil, and vegetation characteristics. Consistent with results from the field, deep roots coincide with environments for which precipitation and potential evapotranspiration are approximately equal. For water-limited ecosystems, increases in the wetness of the climate produce deeper roots, and root depth is more sensitive to changes in the depth of rain events than to their frequency. In wet environments, the opposite is true; root depth generally decreases with increasing wetness and shows greater sensitivity to changes in rainfall frequency than intensity

    Models of Soil Moisture Dynamics in Ecohydrology: A Comparative Study

    Get PDF
    An accurate description of plant ecology requires an understanding of the interplay between precipitation, infiltration, and evapotranspiration. A simple model for soil moisture dynamics, which does not resolve spatial variations in saturation, facilitates analytical expressions of soil and plant behavior as functions of climate, soil, and vegetation characteristics. Proper application of such a model requires knowledge of the conditions under which the underlying simplifications are appropriate. To address this issue, we compare predictions of evapotranspiration and root zone saturation over a growing season from a simple bucket-filling model to those from a more complex, vertically resolved model. Dimensionless groups of key parameters measure the quality of the match between the models. For a climate, soil, and woody plant characteristic of an African savanna the predictions of the two models are quite similar if the plant can extract water from locally wet regions to make up for roots in dry portions of the soil column; if not, the match is poor

    Dynamics of Hyporheic Flow and Heat Transport Across a Bed-to-Bank Continuum in a Large Regulated River

    Get PDF
    The lower Colorado River (LCR) near Austin, Texas is heavily regulated for hydropower generation. Daily water releases from a dam located 23 km upstream of our study site in the LCR caused the stage to fluctuate by more than 1.5 m about a mean depth of 1.3 m. As a result, the river switches from gaining to losing over a dam storage-release cycle, driving exchange between river water and groundwater. We assessed the hydrologic impacts of this by simultaneous temperature and head monitoring across a bed-to-bank transect. River-groundwater exchange flux is largest close to the bank and decreases away from the bank. Correspondingly, both the depth of the hyporheic zone and the exchange time are largest close to the bank. Adjacent to the bank, the streambed head response is hysteretic, with the hysteresis disappearing with distance from the bank, indicating that transient bank storage affects the magnitude and direction of vertical exchange close to the bank. Pronounced changes in streambed temperature are observed down to a meter. When the river stage is high, which coincides with when the river is coldest, downward advection of heat from a previous cycles\u27 warm-water pulse warms the streambed. When the river is at its lowest stage but warmest temperature, upwelling groundwater cools the streambed. Future research should consider and focus on a more thorough understanding of the impacts of dam regulation on the hydrologic, thermal, biogeochemical, and ecologic dynamics of rivers and their hyporheic and riparian zones

    Climatic, Ecophysiological, and Phenological Controls on Plant Ecohydrological Strategies in Seasonally Dry Ecosystems

    Get PDF
    Large areas in the tropics and at mid-latitudes experience pronounced seasonality and inter-annual variability in rainfall and hence water availability. Despite the importance of these seasonally dry ecosystems (SDEs) for the global carbon cycling and in providing ecosystem services, a unifying ecohydrological framework to interpret the effects of climatic variability on SDEs is still lacking. A synthesis of existing data about plant functional adaptations in SDEs, covering some 400 species, shows that leaf phenological variations, rather than physiological traits, provide the dominant control on plant-water-carbon interactions. Motivated by this result, the combined implications of leaf phenology and climatic variability on plant water use strategies are here explored with a minimalist model of the coupled soil water and plant carbon balances. The analyses are extended to five locations with different hydroclimatic forcing, spanning seasonally dry tropical climates (without temperature seasonality) and Mediterranean climates (exhibiting out of phase seasonal patterns of rainfall and temperature). The most beneficial leaf phenology in terms of carbon uptake depends on the climatic regime: evergreen species are favoured by short dry seasons or access to persistent water stores, whereas high inter-annual variability of rainy season duration favours the coexistence of multiple drought-deciduous phenological strategies. We conclude that drought-deciduousness may provide a competitive advantage in face of predicted declines in rainfall totals, while reduced seasonality and access to deep water stores may favour evergreen species. This article has been contributed to by US Government employees and their work is in the public domain in the USA

    Peak grain forecasts for the US High Plains amid withering waters

    Get PDF
    Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas
    corecore