22 research outputs found

    Dependence of the electronic structure of self-assembled InGaAs/GaAs quantum dots on height and composition

    Full text link
    While electronic and spectroscopic properties of self-assembled In_{1-x}Ga_{x}As/GaAs dots depend on their shape, height and alloy compositions, these characteristics are often not known accurately from experiment. This creates a difficulty in comparing measured electronic and spectroscopic properties with calculated ones. Since simplified theoretical models (effective mass, k.p, parabolic models) do not fully convey the effects of shape, size and composition on the electronic and spectroscopic properties, we offer to bridge the gap by providing accurately calculated results as a function of the dot height and composition. Prominent results are the following. (i) Regardless of height and composition, the electron levels form shells of nearly degenerate states. In contrast, the hole levels form shells only in flat dots and near the highest hole level (HOMO). (ii) In alloy dots, the electrons' ``s-p'' splitting depends weakly on height, while the ``p-p'' splitting depends non-monotonically. In non-alloyed InAs/GaAs dots, both these splittings depend weakly on height. For holes in alloy dots, the ``s-p'' splitting decreases with increasing height, whereas the ``p-p'' splitting remains nearly unchaged. Shallow, non-alloyed dots have a ``s-p'' splitting of nearly the same magnitude, whereas the ``p-p'' splitting is larger. (iii) As height increases, the ``s'' and ``p'' character of the wavefunction of the HOMO becomes mixed, and so does the heavy- and light-hole character. (iv) In alloy dots, low-lying hole states are localized inside the dot. Remarkably, in non-alloyed InAs/GaAs dots these states become localized at the interface as height increases. This localization is driven by the biaxial strain present in the nanostructure.Comment: 14 pages, 12 figure

    Nominally forbidden transitions in the interband optical spectrum of quantum dots

    Full text link
    We calculate the excitonic optical absorption spectra of (In,Ga)As/GaAs self-assembled quantum dots by adopting an atomistic pseudopotential approach to the single-particle problem followed by a configuration-interaction approach to the many-body problem. We find three types of allowed transitions that would be naively expected to be forbidden. (i) Transitions that are parity forbidden in simple effective mass models with infinite confining wells (e.g. 1S-2S, 1P-2P) but are possible by finite band-offsets and orbital-mixing effects; (ii) light-hole--to--conduction transitions, enabled by the confinement of light-hole states; and (iii) transitions that show and enhanced intensity due to electron-hole configuration mixing with allowed transitions. We compare these predictions with results of 8-band k.p calculations as well as recent spectroscopic data. Transitions in (i) and (ii) explain recently observed satellites of the allowed P-P transitions.Comment: Version published in Phys. Rev.

    Electronic structure of self-assembled InAs/InP quantum dots: A Comparison with self-assembled InAs/GaAs quantum dots

    Full text link
    We investigate the electronic structure of the InAs/InP quantum dots using an atomistic pseudopotential method and compare them to those of the InAs/GaAs QDs. We show that even though the InAs/InP and InAs/GaAs dots have the same dot material, their electronic structure differ significantly in certain aspects, especially for holes: (i) The hole levels have a much larger energy spacing in the InAs/InP dots than in the InAs/GaAs dots of corresponding size. (ii) Furthermore, in contrast with the InAs/GaAs dots, where the sizeable hole pp, dd intra-shell level splitting smashes the energy level shell structure, the InAs/InP QDs have a well defined energy level shell structure with small pp, dd level splitting, for holes. (iii) The fundamental exciton energies of the InAs/InP dots are calculated to be around 0.8 eV (∼\sim 1.55 μ\mum), about 200 meV lower than those of typical InAs/GaAs QDs, mainly due to the smaller lattice mismatch in the InAs/InP dots. (iii) The widths of the exciton PP shell and DD shell are much narrower in the InAs/InP dots than in the InAs/GaAs dots. (iv) The InAs/GaAs and InAs/InP dots have a reversed light polarization anisotropy along the [100] and [11ˉ\bar{1}0] directions

    Effects of morphology on phonons of nanoscopic silver grains

    Get PDF
    The morphology of nanoscopic Ag grains significantly affects the phonons. Atomistic simulations show that realistic nanograin models display complex vibrational properties. (1) Single-crystalline grains. Nearly-pure torsional and radial phonons appear at low frequencies. For low-energy, faceted models, the breathing mode and acoustic gap (lowest frequency) are about 10% lower than predicted by elasticity theory (ET) for a continuum sphere of the same volume. The sharp edges and the atomic lattice split the ET-acoustic-gap quintet into a doublet and triplet. The surface protrusions associated with nearly spherical, high-energy models produce a smaller acoustic gap and a higher vibrational density of states (DOS) at frequencies \nu<2 THz. (2) Twined icosahedra. In contrast to the single-crystal case, the inherent strain produce a larger acoustic gap, while the core atoms yield a DOS tail extending beyond the highest frequency of single-crystalline grains. (3) Mark's decahedra, in contrast to (1) and (2), do not have a breathing mode; although twined and strained, do not exhibit a high-frequency tail in the DOS. (4) Irregular nanograins. Grain boundaries and surface disorder yield non-degenerate phonon frequencies, and significantly smaller acoustic gap. Only these nanograins exhibit a low-frequency \nu^2 DOS in the interval 1-2 THz.Comment: Version published in Phys. Rev.

    Carrier relaxation mechanisms in self-assembled (In,Ga)As/GaAs quantum dots: Efficient P -> S Auger relaxation of electrons

    Full text link
    We calculate the P-shell--to-S-shell decay lifetime \tau(P->S) of electrons in lens-shaped self-assembled (In,Ga)As/GaAs dots due to Auger electron-hole scattering within an atomistic pseudopotential-based approach. We find that this relaxation mechanism leads to fast decay of \tau(P->S)~1-7 ps for dots of different sizes. Our calculated Auger-type P-shell--to-S-shell decay lifetimes \tau(P->S) compare well to data in (In,Ga)As/GaAs dots, showing that as long as holes are present there is no need for an alternative polaron mechanism.Comment: Version published in Phys. Rev.

    Electronic excitations and the tunneling spectra of metallic nanograins

    Full text link
    Tunneling-induced electronic excitations in a metallic nanograin are classified in terms of {\em generations}: subspaces of excitations containing a specific number of electron-hole pairs. This yields a hierarchy of populated excited states of the nanograin that strongly depends on (a) the available electronic energy levels; and (b) the ratio between the electronic relaxation rate within the nano-grain and the bottleneck rate for tunneling transitions. To study the response of the electronic energy level structure of the nanograin to the excitations, and its signature in the tunneling spectrum, we propose a microscopic mean-field theory. Two main features emerge when considering an Al nanograin coated with Al oxide: (i) The electronic energy response fluctuates strongly in the presence of disorder, from level to level and excitation to excitation. Such fluctuations produce a dramatic sample dependence of the tunneling spectra. On the other hand, for excitations that are energetically accessible at low applied bias voltages, the magnitude of the response, reflected in the renormalization of the single-electron energy levels, is smaller than the average spacing between energy levels. (ii) If the tunneling and electronic relaxation time scales are such as to admit a significant non-equilibrium population of the excited nanoparticle states, it should be possible to realize much higher spectral densities of resonances than have been observed to date in such devices. These resonances arise from tunneling into ground-state and excited electronic energy levels, as well as from charge fluctuations present during tunneling.Comment: Submitted to the Physical Review

    Salivary Glucose Oxidase from Caterpillars Mediates the Induction of Rapid and Delayed-Induced Defenses in the Tomato Plant

    Get PDF
    Caterpillars produce oral secretions that may serve as cues to elicit plant defenses, but in other cases these secretions have been shown to suppress plant defenses. Ongoing work in our laboratory has focused on the salivary secretions of the tomato fruitworm, Helicoverpa zea. In previous studies we have shown that saliva and its principal component glucose oxidase acts as an effector by suppressing defenses in tobacco. In this current study, we report that saliva elicits a burst of jasmonic acid (JA) and the induction of late responding defense genes such as proteinase inhibitor 2 (Pin2). Transcripts encoding early response genes associated with the JA pathway were not affected by saliva. We also observed a delayed response to saliva with increased densities of Type VI glandular trichomes in newly emerged leaves. Proteomic analysis of saliva revealed glucose oxidase (GOX) was the most abundant protein identified and we confirmed that it plays a primary role in the induction of defenses in tomato. These results suggest that the recognition of GOX in tomato may represent a case for effector-triggered immunity. Examination of saliva from other caterpillar species indicates that saliva from the noctuids Spodoptera exigua and Heliothis virescens also induced Pin2 transcripts
    corecore