4,614 research outputs found

    Design, fabrication, and test of a composite material wind turbine rotor blade

    Get PDF
    The aerodynamic design, structural design, fabrication, and structural testing is described for a 60 foot long filament wound, fiberglass/epoxy resin matrix wind turbine rotor blade for a 125 foot diameter, 100 kW wind energy conversion system. One blade was fabricated which met all aerodynamic shape requirements and was structurally capable of operating under all specified design conditions. The feasibility of filament winding large rotor blades was demonstrated

    Color separate singlets in e+ee^+e^- annihilation

    Get PDF
    We use the method of color effective Hamiltonian to study the properties of states in which a gluonic subsystem forms a color singlet, and we will study the possibility that such a subsystem hadronizes as a separate unit. A parton system can normally be subdivided into singlet subsystems in many different ways, and one problem arises from the fact that the corresponding states are not orthogonal. We show that if only contributions of order 1/Nc21/N_c^2 are included, the problem is greatly simplified. Only a very limited number of states are possible, and we present an orthogonalization procedure for these states. The result is simple and intuitive and could give an estimate of the possibility to produce color separated gluonic subsystems, if no dynamical effects are important. We also study with a simple MC the possibility that configurations which correspond to "short strings" are dynamically favored. The advantage of our approach over more elaborate models is its simplicity, which makes it easier to estimate color reconnection effects in reactions which are more complicated than the relatively simple e+ee^+e^- annihilation.Comment: Revtex, 24 pages, 7 figures; Compared to the previous version, 1 new figure is added and Monte-Carlo results are re-analyzed, as suggested by the referee; To appear in Phys. Rev.

    Model of Thermal Wavefront Distortion in Interferometric Gravitational-Wave Detectors I: Thermal Focusing

    Get PDF
    We develop a steady-state analytical and numerical model of the optical response of power-recycled Fabry-Perot Michelson laser gravitational-wave detectors to thermal focusing in optical substrates. We assume that the thermal distortions are small enough that we can represent the unperturbed intracavity field anywhere in the detector as a linear combination of basis functions related to the eigenmodes of one of the Fabry-Perot arm cavities, and we take great care to preserve numerically the nearly ideal longitudinal phase resonance conditions that would otherwise be provided by an external servo-locking control system. We have included the effects of nonlinear thermal focusing due to power absorption in both the substrates and coatings of the mirrors and beamsplitter, the effects of a finite mismatch between the curvatures of the laser wavefront and the mirror surface, and the diffraction by the mirror aperture at each instance of reflection and transmission. We demonstrate a detailed numerical example of this model using the MATLAB program Melody for the initial LIGO detector in the Hermite-Gauss basis, and compare the resulting computations of intracavity fields in two special cases with those of a fast Fourier transform field propagation model. Additional systematic perturbations (e.g., mirror tilt, thermoelastic surface deformations, and other optical imperfections) can be included easily by incorporating the appropriate operators into the transfer matrices describing reflection and transmission for the mirrors and beamsplitter.Comment: 24 pages, 22 figures. Submitted to JOSA

    Detecting Gluino-Containing Hadrons

    Get PDF
    When SUSY breaking produces only dimension-2 operators, gluino and photino masses are of order 1 GeV or less. The gluon-gluino bound state has mass 1.3-2.2 GeV and lifetime > 10^{-5} - 10^{-10} s. This range of mass and lifetime is largely unconstrained because missing energy and beam dump techniques are ineffective. With only small modifications, upcoming K^0 decay experiments can study most of the interesting range. The lightest gluino-containing baryon (uds-gluino) is long-lived or stable; experiments to find it and the uud-gluino are also discussed.Comment: 13 pp, 1 figure (uuencoded). Descendant of hep-ph/9504295, hep-ph/9508291, and hep-ph/9508292, focused on experimental search techniques. To be published in Phys Rev Let

    Search for antiproton decay at the Fermilab Antiproton Accumulator

    Full text link
    A search for antiproton decay has been made at the Fermilab Antiproton Accumulator. Limits are placed on thirteen antiproton decay modes. The results include the first explicit experimental limits on the muonic decay modes of the antiproton, and the first limits on the decay modes e- gamma gamma, and e- omega. The most stringent limit is for the decay mode pbar-> e- gamma. At 90% C.L. we find that tau/B(pbar-> e- gamma) > 7 x 10^5 yr. The most stringent limit for decay modes with a muon in the final state is for the decay pbar-> mu- gamma. At 90% C.L. we find that tau/B(pbar-> mu- gamma) > 5 x 10^4 yr.Comment: 20 pages, 8 figures. Submitted to Phys. Rev. D. Final results on 13 channels (was 15) are presente

    Energies and wave functions for a soft-core Coulomb potential

    Get PDF
    For the family of model soft Coulomb potentials represented by V(r) = -\frac{Z}{(r^q+\beta^q)^{\frac{1}{q}}}, with the parameters Z>0, \beta>0, q \ge 1, it is shown analytically that the potentials and eigenvalues, E_{\nu\ell}, are monotonic in each parameter. The potential envelope method is applied to obtain approximate analytic estimates in terms of the known exact spectra for pure power potentials. For the case q =1, the Asymptotic Iteration Method is used to find exact analytic results for the eigenvalues E_{\nu\ell} and corresponding wave functions, expressed in terms of Z and \beta. A proof is presented establishing the general concavity of the scaled electron density near the nucleus resulting from the truncated potentials for all q. Based on an analysis of extensive numerical calculations, it is conjectured that the crossing between the pair of states [(\nu,\ell),(\nu',\ell')], is given by the condition \nu'\geq (\nu+1) and \ell' \geq (\ell+3). The significance of these results for the interaction of an intense laser field with an atom is pointed out. Differences in the observed level-crossing effects between the soft potentials and the hydrogen atom confined inside an impenetrable sphere are discussed.Comment: 13 pages, 5 figures, title change, minor revision

    Search for axion-like particles using a variable baseline photon regeneration technique

    Full text link
    We report the first results of the GammeV experiment, a search for milli-eV mass particles with axion-like couplings to two photons. The search is performed using a "light shining through a wall" technique where incident photons oscillate into new weakly interacting particles that are able to pass through the wall and subsequently regenerate back into detectable photons. The oscillation baseline of the apparatus is variable, thus allowing probes of different values of particle mass. We find no excess of events above background and are able to constrain the two-photon couplings of possible new scalar (pseudoscalar) particles to be less than 3.1x10^{-7} GeV^{-1} (3.5x10^{-7} GeV^{-1}) in the limit of massless particles.Comment: 5 pages, 4 figures. This is the version accepted by PRL and includes updated limit

    Search for muonic decays of the antiproton at the Fermilab Antiproton Accumulator

    Get PDF
    A search for antiproton decay has been made at the Fermilab Antiproton Accumulator. Limits are placed on six antiproton decay modes which contain a final-state muon. At the 90% C.L. we find that tau/B(mu gamma) > 5.0 x 10^4 yr, tau/B(mu pi0) > 4.8 x 10^4 yr, tau/B(mu eta) > 7.9 x 10^3 yr, tau/B(mu gamma gamma) > 2.3 x 10^4 yr, tau/B(mu K0S > 4.3 x 10^3 yr, and tau/B(mu K0L) > 6.5 x 10^3 yr.Comment: 8 pages + 3 Postscript figure

    String Effects on Fermi--Dirac Correlation Measurements

    Get PDF
    We investigate some recent measurements of Fermi--Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e+ee^+e^--annihilation at the Z0Z^0 peak. In the hadronization models there are besides the Fermi--Dirac correlation effect also a strong dynamical (anti-)correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations which are not related to Fermi--Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model-uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to make any firm conclusion about the source radii relevant for baryon production at LEP

    Effect of heat treatment on mechanical dissipation in Ta2_2O5_5 coatings

    Get PDF
    Thermal noise arising from mechanical dissipation in dielectric reflective coatings is expected to critically limit the sensitivity of precision measurement systems such as high-resolution optical spectroscopy, optical frequency standards and future generations of interferometric gravitational wave detectors. We present measurements of the effect of post-deposition heat treatment on the temperature dependence of the mechanical dissipation in ion-beam sputtered tantalum pentoxide between 11\,K and 300\,K. We find the temperature dependence of the dissipation is strongly dependent on the temperature at which the heat treatment was carried out, and we have identified three dissipation peaks occurring at different heat treatment temperatures. At temperatures below 200\,K, the magnitude of the loss was found to increase with higher heat treatment temperatures, indicating that heat treatment is a significant factor in determining the level of coating thermal noise.Comment: accepted Classical and Quantum Gravity 201
    corecore