1,027 research outputs found

    ASRP: the Arabidopsis Small RNA Project Database

    Get PDF
    Eukaryotes produce functionally diverse classes of small RNAs (20–25 nt). These include microRNAs (miRNAs), which act as regulatory factors during growth and development, and short-interfering RNAs (siRNAs), which function in several epigenetic and post-transcriptional silencing systems. The Arabidopsis Small RNA Project (ASRP) seeks to characterize and functionally analyze the major classes of endogenous small RNAs in plants. The ASRP database provides a repository for sequences of small RNAs cloned from various Arabidopsis genotypes and tissues. Version 3.0 of the database contains 1920 unique sequences, with tools to assist in miRNA and siRNA identification and analysis. The comprehensive database is publicly available through a web interface at http://asrp.cgrb.oregonstate.edu

    Erioflorin stabilizes the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase ÎČ-TrCP1

    Get PDF
    Loss of the tumor suppressor Pdcd4 was reported for various tumor entities and proposed as a prognostic marker in tumorigenesis. We previously characterized decreased Pdcd4 protein stability in response to mitogenic stimuli, which resulted from p70S6K1-dependent protein phosphorylation, ÎČ-TrCP1-mediated ubiquitination, and proteasomal destruction. Following high-throughput screening of natural product extract libraries using a luciferase-based reporter assay to monitor phosphorylation-dependent proteasomal degradation of the tumor suppressor Pdcd4, we succeeded in showing that a crude extract from Eriophyllum lanatum stabilized Pdcd4 from TPA-induced degradation. Erioflorin was identified as the active component and inhibited not only degradation of the Pdcd4-luciferase-based reporter but also of endogenous Pdcd4 at low micromolar concentrations. Mechanistically, erioflorin interfered with the interaction between the E3-ubiquitin ligase ÎČ-TrCP1 and Pdcd4 in cell culture and in in vitro binding assays, consequently decreasing ubiquitination and degradation of Pdcd4. Interestingly, while erioflorin stabilized additional ÎČ-TrCP-targets (such as IÎșBα and ÎČ-catenin), it did not prevent the degradation of targets of other E3-ubiquitin ligases such as p21 (a Skp2-target) and HIF-1α (a pVHL-target), implying selectivity for ÎČ-TrCP. Moreover, erioflorin inhibited the tumor-associated activity of known Pdcd4- and IÎșBα-regulated αtranscription factors, that is, AP-1 and NF-ÎșB, altered cell cycle progression and suppressed proliferation of various cancer cell lines. Our studies succeeded in identifying erioflorin as a novel Pdcd4 stabilizer that inhibits the interaction of Pdcd4 with the E3-ubiquitin ligase ÎČ-TrCP1. Inhibition of E3-ligase/target-protein interactions may offer the possibility to target degradation of specific proteins only as compared to general proteasome inhibition

    Quasi-analytical solutions for APSIDAL motion in the three-body problem: Sun—minor planet—Jupiter

    Get PDF
    This paper deals with the effect of a third body on the apsidal motion of two bodies. The specific case involves a third body-planet Jupiter and the apsidal line motion of a minor planet that orbits the Sun and has its apsidal line go through the major axis of an ellipse. The third body (Jupiter) which satisfies the Langrangian solution will affect the apsidal line motion and therefore affects the ascending and descending motions of the minor planet. In this case no analytical solutions can be obtained, and therefore specific assumptions are made along with numerical solutions. For convenience, we adopt the Lagrangian solution in the three-body problem and obtain quasi-analytical results, which are used to evaluate the effect of the planet on the d Omega/dt (Omega ascending node) of each minor planet. This method is beneficial for improving our knowledge of the orbital elements of the asteroids, and perhaps even much smaller effects such as the effects of the planets on the interplanetary dust complex. Information on the latter may be provided by using this method to investigate Jupiter\u27s effect on the inclination of the symmetry surface of the zodiacal dust cloud

    Genetic and Functional Diversification of Small RNA Pathways in Plants

    Get PDF
    Multicellular eukaryotes produce small RNA molecules (approximately 21–24 nucleotides) of two general types, microRNA (miRNA) and short interfering RNA (siRNA). They collectively function as sequence-specific guides to silence or regulate genes, transposons, and viruses and to modify chromatin and genome structure. Formation or activity of small RNAs requires factors belonging to gene families that encode DICER (or DICER-LIKE [DCL]) and ARGONAUTE proteins and, in the case of some siRNAs, RNA-dependent RNA polymerase (RDR) proteins. Unlike many animals, plants encode multiple DCL and RDR proteins. Using a series of insertion mutants of Arabidopsis thaliana, unique functions for three DCL proteins in miRNA (DCL1), endogenous siRNA (DCL3), and viral siRNA (DCL2) biogenesis were identified. One RDR protein (RDR2) was required for all endogenous siRNAs analyzed. The loss of endogenous siRNA in dcl3 and rdr2 mutants was associated with loss of heterochromatic marks and increased transcript accumulation at some loci. Defects in siRNA-generation activity in response to turnip crinkle virus in dcl2 mutant plants correlated with increased virus susceptibility. We conclude that proliferation and diversification of DCL and RDR genes during evolution of plants contributed to specialization of small RNA-directed pathways for development, chromatin structure, and defense

    Landscaping Septic Systems

    Get PDF
    FO-6986-B 199

    Measurement of the Alpha Asymmetry Parameter for the Omega- to Lambda K- Decay

    Full text link
    We have measured the alpha parameter of the Omega- to Lambda K- decay using data collected with the HyperCP spectrometer during the 1997 fixed-target run at Fermilab. Analyzing a sample of 0.96 million Omega- to Lambda K^-, Lambda to p pi- decays, we obtain alpha_Omega*alpha_Lambda = [1.33+/-0.33(stat)+/-0.52(syst)] x 10^{-2}. With the accepted value of alpha_Lambda, alpha_Omega is found to be [2.07+/-0.51(stat)+/-0.81(syst)] x 10^{-2}.Comment: 5 pages, 4 figures, to be appeared as a Rapid Communication in Phys. Rev.

    Evidence for the Decay Sigma+ -> p mu+ mu-

    Full text link
    We report the first evidence for the decay Sigma+ -> p mu+ mu- from data taken by the HyperCP experiment(E871) at Fermilab. Based on three observed events, the branching ratio is B(Sigma+ -> p,mu+,mu-) = [8.6 +6.6,-5.4(stat) +/-5.5(syst)] x 10**-8. The narrow range of dimuon masses may indicate that the decay proceeds via a neutral intermediate state, Sigma+ -> p P0, P0 -> mu+ mu-, with a P0 mass of 214.3 +/- 0.5 MeV/c**2 and branching ratio B(Sigma+ -> p P0; P0 -> mu+ mu-) = [3.1 +2.4,-1.(stat) +/-1.5(syst)] x 10**-8.Comment: As published in PR
    • 

    corecore