2 research outputs found

    Biodiversity, Disparity and Evolvability

    Get PDF
    A key problem in conservation biology is how to measure biological diversity. Taxic diversity (the number of species in a community or in a local biota) is not necessarily the most important aspect, if what most matters is to evaluate how the loss of the different species may impact on the future of the surviving species and communities. Alternative approaches focus on functional diversity (a measure of the distribution of the species among the different 'jobs' in the ecosystem), others on morphological disparity, still others on phylogenetic diversity. There are three major reasons to prioritize the survival of species which provide the largest contributions to the overall phylogenetic diversity. First, evolutionarily isolated lineages are frequently characterized by unique traits. Second, conserving phylogenetically diverse sets of taxa is valuable because it conserves some sort of trait diversity, itself important in so far as it helps maintain ecosystem functioning, although a strict relationships between phylogenetic diversity and functional diversity cannot be taken for granted. Third, in this way we maximize the "evolutionary potential" depending on the evolvability of the survivors. This suggests an approach to conservation problems focussed on evolvability, robustness and phenotypic plasticity of developmental systems in the face of natural selection: in other terms, an approach based on evolutionary developmental biology

    Burrows with Chimneys of the Fiddler Crab Uca thayeri: Construction, Occurrence, and Function

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Joao B. L. Gusmao-Junior, Glauco B. O. Machado, and Tania M. Costa (2012) Burrows with chimneys of the fiddler crab Uca thayeri: construction, occurrence, and function. Zoological Studies 51(5): 598-605. Building of soil structures is observed in a variety of semi-terrestrial crustaceans. In fiddler crabs (Genus Uca), this behavior occurs in several species, some of which build structures that are largely ornamental and others construct barriers that are apparently for defense. Although there is a relative abundance of studies on this type of behavior in Uca, the relationship between the social context and the occurrence of these structures remains poorly studied. Thus, this study attempted to analyze in detail the construction, occurrence, and function of mud chimneys built by the fiddler crab Uca thayeri; these sedimentary structures are possibly associated with burrow defense. Field investigations and laboratory experiments were conducted. Both sexes were often found in burrows with chimneys; however, laboratory experiments showed that only females actively built and maintained chimneys, with some difference in the morphology of these structures between sexes. The social context had little influence on the construction of chimneys, which showed that the stimulus for constructing chimneys could be endogenous. Our results suggest that burrows with chimney of U. thayeri may have functions other than defense, and may act in regulating the internal conditions of the burrow, as observed in other crustaceans with such building behavior. http://zoolstud.sinica.edu.tw/Journals/51.5/598.pdf515598605Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [2008/11635-9, 2010/01268-9
    corecore