437 research outputs found

    A new determination of the primordial He abundance using the HeI 10830A emission line: cosmological implications

    Full text link
    We present near-infrared spectroscopic observations of the high-intensity HeI 10830 emission line in 45 low-metallicity HII regions. We combined these NIR data with spectroscopic data in the optical range to derive the primordial He abundance. The use of the HeI 10830A line, the intensity of which is very sensitive to the density of the HII region, greatly improves the determination of the physical conditions in the He^+ zone. This results in a considerably tighter Y - O/H linear regression compared to all previous studies. We extracted a final sample of 28 HII regions with Hbeta equivalent width EW(Hbeta)>150A, excitation parameter O^2+/O>0.8, and with helium mass fraction Y derived with an accuracy better than 3%. With this final sample we derived a primordial He mass fraction Yp = 0.2551+/-0.0022. The derived value of Yp is higher than the one predicted by the standard big bang nucleosynthesis (SBBN) model. Using our derived Yp together with D/H = (2.53+/-0.04)x10^-5, and the chi^2 technique, we found that the best agreement between these light element abundances is achieved in a cosmological model with a baryon mass density Omega_b h^2 = 0.0240+/-0.0017 (68% CL), +/-0.0028 (95.4% CL), +/-0.0034 (99% CL) and an effective number of neutrino species Neff = 3.58+/-0.25 (68% CL), +/-0.40 (95.4% CL), +/-0.50 (99% CL). A non-standard value of Neff is preferred at the 99% CL, implying the possible existence of additional types of neutrino species.Comment: 18 pages, 11 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society. arXiv admin note: text overlap with arXiv:1308.210

    J0811+4730: the most metal-poor star-forming dwarf galaxy known

    Full text link
    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z=0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude M_g = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. LBT/MODS spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 +/- 0.02, the lowest ever observed for a SFG. J0811+4730 strongly deviates from the main-sequence defined by SFGs in the emission-line diagnostic diagrams and the metallicity - luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811++4730, which is ~10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M* = 10^6.24 - 10^6.29 Msun (statistical uncertainties only), and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.Comment: 12 pages, 5 figures, accepted for publication in MNRA

    Lyman-alpha spectral properties of five newly discovered Lyman continuum emitters

    Full text link
    We have recently reported the discovery of five low redshift Lyman continuum (LyC) emitters (LCEs, hereafter) with absolute escape fractions fesc(LyC) ranging from 6 to 13%, higher than previously found, and which more than doubles the number of low redshift LCEs.We use these observations to test theoretical predictions about a link between the characteristics of the Lyman-alpha (Lya) line from galaxies and the escape of ionising photons. We analyse the Lya spectra of eight LCEs of the local Universe observed with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (our five leakers and three galaxies from the litterature), and compare their strengths and shapes to the theoretical criteria and comparison samples of local galaxies: the Lyman Alpha Reference Survey, Lyman Break Analogs, Green Peas, and the high-redshift strong LyC leaker Ion2. Our LCEs are found to be strong Lya emitters, with high equivalent widths, EW(Lya)> 70 {\AA}, and large Lya escape fractions, fesc(Lya) > 20%. The Lya profiles are all double-peaked with a small peak separation, in agreement with our theoretical expectations. They also have no underlying absorption at the Lya position. All these characteristics are very different from the Lya properties of typical star-forming galaxies of the local Universe. A subset of the comparison samples (2-3 Green Pea galaxies) share these extreme values, indicating that they could also be leaking. We also find a strong correlation between the star formation rate surface density and the escape fraction of ionising photons, indicating that the compactness of star-forming regions plays a role in shaping low column density paths in the interstellar medium of LCEs. The Lya properties of LCEs are peculiar: Lya can be used as a reliable tracer of LyC escape from galaxies, in complement to other indirect diagnostics proposed in the literature.Comment: 11 pages, 10 figures, accepted for publication in A&

    Two extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey

    Full text link
    We present spectroscopic observations with the 3.6m ESO telescope of two emission-line galaxies, J2104-0035 and J0113+0052, selected from the Data Release 4 (DR4) of the Sloan Digital Sky Survey (SDSS). From our data we determine the oxygen abundance of these systems to be respectively 12+logO/H = 7.26+/-0.03 and 7.17+/-0.09, making them the two most metal-deficient galaxies found thus far in the SDSS and placing them among the five most metal-deficient emission-line galaxies ever discovered. Their oxygen abundances are close to those of the two most metal-deficient emission-line galaxies known, SBS0335-052W with 12+logO/H = 7.12+/-0.03 and I Zw 18 with 12+logO/H = 7.17+/-0.01.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy and Astrophysic

    Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies

    Full text link
    Following our first detection reported in Izotov et al. (2016), we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST). These galaxies, at redshifts of z~0.3, are characterized by high emission-line flux ratios [OIII]5007/[OII]3727 > 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ~6%-13%, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Lyalpha emission lines are detected in the spectra of all four galaxies, compatible with predictions for Lyman continuum leakers. We find escape fractions of Lyalpha, fesc(Lyalpha) ~20%-40%, among the highest known for Lyalpha emitters (LAEs). Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the center and exponential discs in the outskirts with disc scale lengths alpha in the range ~0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ~1/8-1/5 solar, low stellar mass ~(0.2 - 4)e9 Msun, high star formation rates SFR~14-36 Msun/yr, and high SFR densities Sigma~2-35 Msun/yr/kpc^2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al. (2016), reveal that a selection for compact star-forming galaxies showing high [OIII]5007/[OII]3727 ratios appears to pick up very efficiently sources with escaping Lyman continuum radiation: all five of our selected galaxies are LyC leakers.Comment: 21 pages, 14 figures, accepted for publication in MNRAS; corrected Lyalpha escape fraction

    Do galaxies that leak ionizing photons have extreme outflows?

    Full text link
    To reionize the early universe, high-energy photons must escape the galaxies that produce them. It has been suggested that stellar feedback drives galactic outflows out of star-forming regions, creating low density channels through which ionizing photons escape into the inter-galactic medium. We compare the galactic outflow properties of confirmed Lyman continuum (LyC) leaking galaxies to a control sample of nearby star-forming galaxies to explore whether the outflows from leakers are extreme as compared to the control sample. We use data from the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure the equivalent widths and velocities of Si II and Si III absorption lines, tracing neutral and ionized galactic outflows. We find that the Si II and Si III equivalent widths of the LyC leakers reside on the low-end of the trend established by the control sample. The leakers' velocities are not statistically different than the control sample, but their absorption line profiles have a different asymmetry: their central velocities are closer to their maximum velocities. The outflow kinematics and equivalent widths are consistent with the scaling relations between outflow properties and host galaxy properties -- most notably metallicity -- defined by the control sample. Additionally, we use the Ly\alpha\ profiles to show that the Si II equivalent width scales with the Ly\alpha\ peak velocity separation. We determine that the low equivalent widths of the leakers are likely driven by low metallicities and low H I column densities, consistent with a density-bounded ionization region, although we cannot rule out significant variations in covering fraction. While we do not find that the LyC leakers have extreme outflow velocities, the low maximum-to-central velocity ratios demonstrate the importance of the acceleration and density profiles for LyC and Ly\alpha\ escape. [abridged]Comment: 17 pages, 8 Figures. Accepted for publication in Astronomy & Astrophysic

    Hunting for extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey: MMT and 3.5m APO observations

    Full text link
    We present 6.5-meter MMT and 3.5m APO spectrophotometry of 69 H II regions in 42 low-metallicity emission-line galaxies, selected from the Data Release 7 of the Sloan Digital Sky Survey to have mostly [O III]4959/Hbeta < 1 and [N II]6583/Hbeta < 0.1. The electron temperature-sensitive emission line [O III] 4363 is detected in 53 H II regions allowing a direct abundance determination. The oxygen abundance in the remaining 16 H II regions is derived using a semi-empirical method. The oxygen abundance of the galaxies in our sample ranges from 12 + log O/H ~ 7.1 to ~ 7.9, with 14 H II regions in 7 galaxies with 12 +log O/H < 7.35. In 5 of the latter galaxies, the oxygen abundance is derived here for the first time. Including other known extremely metal-deficient emission-line galaxies from the literature, e.g. SBS 0335-052W, SBS 0335-052E and I Zw 18, we have compiled a sample of the 17 most metal-deficient (with 12 +log O/H < 7.35) emission-line galaxies known in the local universe. There appears to be a metallicity floor at 12 +log O/H ~ 6.9, suggesting that the matter from which dwarf emission-line galaxies formed was pre-enriched to that level by e.g. Population III stars.Comment: 35 pages, 6 figures, accepted for publication in Astronomy and Astrophysisc
    corecore