24 research outputs found

    Group III PLA2 from the scorpion, Mesobuthus tamulus: cloning and recombinant expression in E. coli

    Get PDF
    Phospholipases A2 (PLA2) are enzymes that specifically hydrolyze the sn-2 fatty acid acyl bond of phospholipids, producing a free fatty acid and a lyso-phospholipid. We report the cloning and expression of a secretory phospholipase A2 (sPLA2) from Mesobuthus tamulus, Indian red scorpion. The nucleotide sequence codes for a 167 residue enzyme. The open reading frame codes for a 31 amino acid signal peptide followed by a mature portion of the protein. The primary structure shows the calcium binding motif, catalytic residues, 8 highly-conserved cysteines and C-terminal extension which classify it as a group III PLA2. The entire transcript was expressed in Escherichia coli and was purified by metal affinity chromatography under denaturing conditions. The protein was refolded by serial dilutions in the refolding buffer to its active form. Hemolytic assays indicate that the protein adopts a functional conformation. The functional requisites such as optimum pH of 8 and calcium dependency are shown. This report provides a simple but robust methodology for recombinant expression of toxic proteins

    Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key

    Get PDF
    BACKGROUND: Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. METHODOLOGY: We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Abeta(1-42)) peptide is modified. Changes in the hydrodynamic volume of Abeta(1-42) in the presence of arginine measured by size exclusion chromatography show that arginine binds to Abeta(1-42). Arginine increases the solubility of Abeta(1-42) peptide in aqueous medium. It decreases the aggregation of Abeta(1-42) as observed by atomic force microscopy. CONCLUSIONS: Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation

    Apolipoprotein A1 as a potential biomarker in the ascitic fluid for the differentiation of advanced ovarian cancers

    No full text
    Context: Primary ovarian cancer and ovarian metastasis from non-ovarian cancers in advanced stage are closely mimicking conditions whose therapeutics and prognosis are different. Objective: To identify biomarkers that can differentiate the two variants of advanced ovarian cancers. Methods: Gel-based proteomics and antibody-based assays were used to study the differentially expressed proteins in the ascitic fluid of fourteen patients with advanced ovarian cancers. Results: Programmed Cell Death 1-Ligand 2, apolipoprotein A1, apolipoprotein A4 and anti-human fas antibody are differentially expressed proteins. Conclusions: Apolipoprotein A1 with a 61.8?ng/ml cut-off is a potential biomarker with the best differentiating statistical parameters

    Structural analysis of secretory phospholipase A2 from Clonorchis sinensis: therapeutic implications for hepatic fibrosis

    No full text
    Hepatic fibrosis is a common complication of the infection by the parasite, Clonorchis sinensis. There is a high incidence of this disease in the Asian countries with an increased risk of conversion to cancer. A secretory phospholipase A2 (PLA2) enzyme from the parasite is implicated in the pathology. This is an attractive drug target in the light of extensive structural characterization of this class of enzyme. In this study, the structure of the enzyme was modeled based on its sequence homology to the group III bee venom PLA2. On analysis, the overall structure essentially is comprised of three helices, two sets of β-wings and an elongated C-terminal extension. The structure is stabilized by four disulfide bonds. The structure is comprised of a calcium binding loop, active site and a substrate binding hydrophobic channel. The active site of the enzyme shows the classical features of PLA2 with the participation of the three residues: histidine-aspartic acid-tyrosine in hydrogen bond formation. This is an interesting variation from the house keeping group III PLA2 enzyme of human which has a histidine-aspartic acid and phenylalanine arrangement at the active site. This difference is therefore an important structural parameter that can be exploited to design specific inhibitor molecules against the pathogen PLA2. Likewise, there are certain unique structural features in the hydrophobic channel and the putative membrane binding surface of the PLA2 from Clonorchis sinensis that not only help understand the mechanism of action but also provide knowledge for a targeted therapy of liver fibrosis caused by the parasite

    Electrical Conductivity as a Tool to Detect Salt in Clinical Proteomics Samples

    No full text
    Clinical proteomics encompasses the study of the proteins in the human body at different settings to understand the various physiological and pathological pathways. The processing of the samples for electrophoresis based proteomics is a challenge to any researcher. Salt in particular can have an array of effects during the electrophoretic separation of proteins. There is a definite need to determine the concentration of salts in the samples and the effectiveness of salt removing protocols on small volume samples. A simple-cost effective technique to know the salt concentration in the clinical proteomics samples has been highlighted in the report. The application will be of value in a developing country such as India

    Two-dimensional difference gel electrophoresis (DIGE) analysis of sera from visceral leishmaniasis patients

    No full text
    Abstract Introduction Visceral leishmaniasis is a parasitic infection caused by Lesihmania donovani complex and transmitted by the bite of the phlebotomine sand fly. It is an endemic disease in many developing countries with more than 90% of the cases occurring in Bangladesh, India, Nepal, Sudan, Ethiopia and Brazil. The disease is fatal if untreated. The disease is conventionally diagnosed by demonstrating the intracellular parasite in bone marrow or splenic aspirates. This study was carried out to discover differentially expressed proteins which could be potential biomarkers. Methods Sera from six visceral leishmaniasis patients and six healthy controls were depleted of high abundant proteins by immunodepletion. The depleted sera were compared by 2-D Difference in gel electrophoresis (DIGE). Differentially expressed proteins were identified the by tandem mass spectrometry. Three of the identified proteins were further validated by western blotting. Results This is the first report of serum proteomics study using quantitative Difference in gel electrophoresis (DIGE) in visceral leishmaniasis. We identified alpha-1-acidglycoprotein and C1 inhibitor as up regulated and transthyretin, retinol binding protein and apolipoprotein A-I as down regulated proteins in visceral leishmaniasis sera in comparison with healthy controls. Western blot validation of C1 inhibitor, transthyretin and apolipoprotein A-I in a larger cohort (n = 29) confirmed significant difference in the expression levels (p Conclusions In conclusion, DIGE based proteomic analysis showed that several proteins are differentially expressed in the sera of visceral leishmaniasis. The five proteins identified here have potential, either independently or in combination, as prognostic biomarkers.</p

    Molecular modeling of Gly80 and Ser80 variants of human group IID phospholipase A2 and their receptor complexes: potential basis for weight loss in chronic obstructive pulmonary disease

    No full text
    Weight loss is a well known systemic manifestation of chronic obstructive pulmonary disease (COPD). A Gly80Ser mutation on human group IID secretory phospholipase A2 (sPLA2) enhances expression of the cytokines that are responsible for weight loss. In this study, we seek to establish a structural correlation of wild type sPLA2 and the Gly80Ser mutation with function. sPLA2 with glycine and serine at the 80th positions and the M-type receptor were modelled. The enzymes were docked to the receptor and molecular dynamics was carried out to 70 ns. Structural analysis revealed the enzymes to comprise three helices (H1–H3), two short helices (SH1 and SH2), and five loops including a calcium binding loop (L1–L5), and to be stabilized by seven disulfide bonds. The overall backbone folds of the two models are very similar, with main chain RMSD of less than 1 Å. The active site within the substrate binding channel shows a catalytic triad of water–His67–Asp112, showing a hydrogen bonded network. Major structural differences between wild type and mutant enzymes were observed locally at the site of the mutation and in their global conformations. These differences include: (1) loop-L3 between H2 and H3, which bears residue Gly80 in the wild type, is in a closed conformation with respect to the channel opening, while in the mutant enzyme it adopts a relatively open conformation; (2) the mutant enzyme is less compact and has higher solvent accessible surface area; and (3) interfacial binding contact surface area is greater, and the quality of interactions with the receptor is better in the mutant enzyme as compared to the wild type. Therefore, the structural differences delineated in this study are potential biophysical factors that could determine the increased potency of the mutant enzyme with macrophage receptor for cytokine secreting function, resulting in exacerbation of cachexia in COPD
    corecore