3 research outputs found
Cardiac magnetic resonance modelling of systolic and diastolic blood pressure
Aims: Blood pressure (BP) is a crucial factor in cardiovascular health and can affect cardiac imaging assessments. However, standard outpatient cardiovascular MR (CMR) imaging procedures do not typically include BP measurements prior to image acquisition. This study proposes that brachial systolic BP (SBP) and diastolic BP (DBP) can be modelled using patient characteristics and CMR data. Methods: In this multicentre study, 57 patients from the PREFER-CMR registry and 163 patients from other registries were used as the derivation cohort. All subjects had their brachial SBP and DBP measured using a sphygmomanometer. Multivariate linear regression analysis was applied to predict brachial BP. The model was subsequently validated in a cohort of 169 healthy individuals. Results: Age and left ventricular ejection fraction were associated with SBP. Aortic forward flow, body surface area and left ventricular mass index were associated with DBP. When applied to the validation cohort, the correlation coefficient between CMR-derived SBP and brachial SBP was (r=0.16, 95% CI 0.011 to 0.305, p=0.03), and CMR-derived DBP and brachial DBP was (r=0.27, 95% CI 0.122 to 0.403, p=0.0004). The area under the curve (AUC) for CMR-derived SBP to predict SBP>120 mmHg was 0.59, p=0.038. Moreover, CMR-derived DBP to predict DBP>80 mmHg had an AUC of 0.64, p=0.002. Conclusion: CMR-derived SBP and DBP models can estimate brachial SBP and DBP. Such models may allow efficient prospective collection, as well as retrospective estimation of BP, which should be incorporated into assessments due to its critical effect on load-dependent parameters
The Importance of Mitral Valve Prolapse Doming Volume in the Assessment of Left Ventricular Stroke Volume with Cardiac MRI
There remains a debate whether the ventricular volume within prolapsing mitral valve (MV) leaflets should be included in the left ventricular (LV) end-systolic volume, and therefore factored in LV stroke volume (SV), in cardiac magnetic resonance (CMR) assessments. This study aims to compare LV volumes during end-systolic phases, with and without the inclusion of the volume of blood on the left atrial aspect of the atrioventricular groove but still within the MV prolapsing leaflets, against the reference LV SV by four-dimensional flow (4DF). A total of 15 patients with MV prolapse (MVP) were retrospectively enrolled in this study. We compared LV SV with (LV SVMVP) and without (LV SVstandard) MVP left ventricular doming volume, using 4D flow (LV SV4DF) as the reference value. Significant differences were observed when comparing LV SVstandard and LV SVMVP (p < 0.001), and between LV SVstandard and LV SV4DF (p = 0.02). The Intraclass Correlation Coefficient (ICC) test demonstrated good repeatability between LV SVMVP and LV SV4DF (ICC = 0.86, p < 0.001) but only moderate repeatability between LV SVstandard and LV SV4DF (ICC = 0.75, p < 0.01). Calculating LV SV by including the MVP left ventricular doming volume has a higher consistency with LV SV derived from the 4DF assessment. In conclusion, LV SV short-axis cine assessment incorporating MVP dooming volume can significantly improve the precision of LV SV assessment compared to the reference 4DF method. Hence, in cases with bi-leaflet MVP, we recommend factoring in MVP dooming into the left ventricular end-systolic volume to improve the accuracy and precision of quantifying mitral regurgitation
Automated quantification of simple and complex aortic flow using 2D phase contrast MRI
(1) Background and Objectives: Flow assessment using cardiovascular magnetic resonance (CMR) provides important implications in determining physiologic parameters and clinically important markers. However, post-processing of CMR images remains labor- and time-intensive. This study aims to assess the validity and repeatability of fully automated segmentation of phase contrast velocity-encoded aortic root plane. (2) Materials and Methods: Aortic root images from 125 patients are segmented by artificial intelligence (AI), developed using convolutional neural networks and trained with a multicentre cohort of 160 subjects. Derived simple flow indices (forward and backward flow, systolic flow and velocity) and complex indices (aortic maximum area, systolic flow reversal ratio, flow displacement, and its angle change) were compared with those derived from manual contours. (3) Results: AI-derived simple flow indices yielded excellent repeatability compared to human segmentation (p < 0.001), with an insignificant level of bias. Complex flow indices feature good to excellent repeatability (p < 0.001), with insignificant levels of bias except flow displacement angle change and systolic retrograde flow yielding significant levels of bias (p < 0.001 and p < 0.05, respectively). (4) Conclusions: Automated flow quantification using aortic root images is comparable to human segmentation and has good to excellent repeatability. However, flow helicity and systolic retrograde flow are associated with a significant level of bias. Overall, all parameters show clinical repeatability