42 research outputs found

    Effect of an axial jet on vortex merging

    Get PDF

    Stroking modulates noxious-evoked brain activity in human infants

    Get PDF
    A subclass of C fibre sensory neurons found in hairy skin are activated by gentle touch [1] and respond optimally to stroking at ∼1–10 cm/s, serving a protective function by promoting affiliative behaviours. In adult humans, stimulation of these C-tactile (CT) afferents is pleasant, and can reduce pain perception [2]. Touch-based techniques, such as infant massage and kangaroo care, are designed to comfort infants during procedures, and a modest reduction in pain-related behavioural and physiological responses has been observed in some studies [3]. Here, we investigated whether touch can reduce noxious-evoked brain activity. We demonstrate that stroking (at 3 cm/s) prior to an experimental noxious stimulus or clinical heel lance can attenuate noxious-evoked brain activity in infants. CT fibres may represent a biological target for non-pharmacological interventions that modulate pain in early life

    Melatonin treatment against remote organ injury induced by renal ischemia reperfusion injury in diabetes mellitus

    No full text
    Oxidative stress may have a role in liver damage after acute renal injury due to various reasons such as ischemia reperfusion (IR). Diabetes mellitus (DM) is an important disease for kidneys and may cause nephropathy as a long term complication. The aim of this study was to investigate protective effect of melatonin, a potent antioxidant, against distant organ injury on liver induced by renal IR in rats with or without DM. The rats were divided into six groups: control (n=7), DM (n=5), IR (n=7), DM+IR (n=7), melatonin+IR (Mel+IR) (melatonin, 4 mg/ kg during 15 days) (n=7), and Mel+DM+IR groups (n=7). Diabetes developed 3 days after single i.p. dose of 45 mg/kg streptozotocin. After 15 day, the left renal artery was occluded for 30 min followed 24 h of reperfusion in IR performed groups. DM did not alter oxidative parameters alone in liver tissue. The levels of malondialdehyde, protein carbonyl and nitric oxide with activities of xanthine oxidase and myeloperoxidase were increased in liver tissues of diabetic and non-diabetic IR groups. Nitric oxide level in DM was higher than control. The activities of catalase and superoxide dismutase were increased in IR groups in comparison with control and DM. ALT and AST levels were higher in IR and DM+IR groups than control and DM. Melatonin treatment reversed all these oxidant and antioxidant parameters to control values as well as serum liver enzymes. We concluded that renal IR may affect distant organs such as liver and oxidative stress may play role on this injury, but DM has not an effect on kidney induced distant organ injury via oxidant stress. Also, it was concluded that melatonin treatment may prevent liver oxidant stress induced by distant injury of kidney IR. © 2008 The Pharmaceutical Society of Korea

    Effects of time scales on lift of airfoils in an unsteady stream

    No full text

    Leading-edge vortex dynamics on plunging airfoils and wings

    Get PDF
    The vortex dynamics of leading-edge vortices on plunging high-aspect-ratio (AR = 10) wings and airfoils were investigated by means of volumetric velocity measurements, numerical simulations, and stability analysis in order to understand the deformation of the leading-edge vortex filament and spanwise instabilities. The vortex filaments on both the wing and airfoil exhibit spanwise waves, but with different origins. The presence of a wing tip causes the leg of the vortex to remain attached to the wing upper surface, while the initial deformation of the filament near the wing-tip resembles a helical vortex. The essential features can be modelled as the deformation of initially L-shaped semi-infinite vortex column. In contrast, the instability of the vortices is well captured by the instability of counter-rotating vortex pairs, which are formed either by the trailing-edge vortices or the secondary vortices rolled-up from the wing surface. The wavelengths observed in the experiments and simulations are in agreement with the stability analysis of counter-rotating vortex pairs of unequal strength

    Effect of an axial jet on vortex merging

    No full text

    Changing balance of spinal cord excitability and nociceptive brain activity in early human development

    Get PDF
    In adults, nociceptive reflexes and behavioral responses are modulated by a network of brain regions via descending projections to the spinal dorsal horn. Coordinated responses to noxious inputs manifest from a balance of descending facilitation and inhibition. In contrast, young infants display exaggerated and uncoordinated limb reflexes. Our understanding of nociceptive processing in the infant brain has been advanced by the use of electrophysiological and hemodynamic imaging. From approximately 35 weeks’ gestation, nociceptive-specific patterns of brain activity emerge, whereas prior to this, non-specific bursts of activity occur in response to noxious, tactile, visual, and auditory stimulation. During the preterm period, refinement of spinal cord excitability is also observed: reflex duration shortens, response threshold increases, and improved discrimination between tactile and noxious events occurs. However, the development of descending modulation in human infants remains relatively unexplored. In 40 infants aged 28–42 weeks’ gestation, we examined the relationship between nociceptive brain activity and spinal reflex withdrawal activity in response to a clinically essential noxious procedure. Nociceptive-specific brain activity increases in magnitude with gestational age, whereas reflex withdrawal activity decreases in magnitude, duration, and latency across the same developmental period. By recording brain and spinal cord activity in the same infants, we demonstrate that the maturation of nociceptive brain activity is concomitant with the refinement of noxious-evoked limb reflexes. We postulate that, consistent with studies in animals, infant reflexes are influenced by the development of top-down inhibitory modulation from maturing subcortical and cortical brain networks
    corecore