165 research outputs found

    Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets

    Get PDF
    Cataloged from PDF version of article.The removal of phenol (Ph) and 2-chlorophenol (2-CPh) from aqueous solution by native and heat inactivated fungus Funalia trogii pellets were investigated. The effects of contact time, solid/liquid ratio, optimum pH and temperature on the phenols removal capacity by the pellets were established. The removal efficiency of phenols increased significantly with increasing biomass dose. The optimum pH was detected to be 8.0. The second-order equations are described and evaluated on the basis of a comparative estimation of the corresponding coefficients. The phenol removal equilibrium isotherm was modeled by the Langmuir equations. The enthalpy change values were obtained between -7.62 and -10.64 kJ/mol. This indicated that the uptake of phenols either on native or heat inactivated fungal pellets was based on a physical adsorption process. © 2008 Elsevier Ltd. All rights reserved

    Fuel-cell performance of multiply-crosslinked polymer electrolyte membranes prepared by two-step radiation technique

    Get PDF
    A multiply-crosslinked polymer electrolyte membrane was prepared by the radiation-induced co-grafting of styrene and a bis(vinyl phenyl)ethane (BVPE) crosslinker into a radiation-crosslinked polytetrafluoroethylene (cPTFE) film. We then investigated its H2/O2 fuel-cell performance at 60 and 80ºC in terms of the effect of radiation and chemical crosslinking. At 60ºC, all the membranes initially exhibited similar performance, but only the cPTFE-based membranes were durable at 80ºC, indicating the necessity of radiation crosslinking in the PTFE main chains. Importantly, cell performance of the multiply-crosslinked membrane was found high enough to reach that of a Nafion112 membrane. This is probably because the BVPE crosslinks in the graft component improved the membrane-electrode interface in addition to membrane durability. After severe OCV hold tests at 80 and 95ºC, the performance deteriorated, while no significant change was observed in ohmic resistivity. Accordingly, our membranes seemed so chemically stable that an influence on overall performance loss could be negligible

    3D LiDAR Scanning of Urban Forest Structure Using a Consumer Tablet

    Get PDF
    Forest measurements using conventional methods may not capture all the important information required to properly characterize forest structure. The objective of this study was to develop a low-cost alternative method for forest inventory measurements and characterization of forest structure using handheld LiDAR technology. Three-dimensional (3D) maps of trees were obtained using an iPad Pro with a LiDAR sensor. Freely-available software programs, including 3D Forest Software and CloudCompare software, were used to determine tree diameter at breast height (DBH) and distance between trees. The 3D point cloud data obtained from the iPad Pro LiDAR sensor was able to estimate tree DBH accurately, with a residual error of 2.4 cm in an urban forest stand and 1.9 cm in an actively managed experimental forest stand. Distances between trees also were accurately estimated, with mean residual errors of 0.21 m for urban forest, and 0.38 m for managed forest stand. This study demonstrates that it is possible to use a low-cost consumer tablet with a LiDAR sensor to accurately measure certain forest attributes, which could enable the crowdsourcing of urban and other forest tree DBH and density data because of its integration into existing Apple devices and ease of use

    The Effect of Sources on the Inner Horizon of Black Holes

    Full text link
    Single pulse of null dust and colliding null dusts both transform a regular horizon into a space-like singularity in the space of colliding waves. The local isometry between such space-times and black holes extrapolates these results to the realm of black holes. However, inclusion of particular scalar fields instead of null dusts creates null singularities rather than space-like ones on the inner horizons of black holes.Comment: Final version to appear in PR

    Renormalization of the charged scalar field in curved space

    Full text link
    The DeWitt-Schwinger proper time point-splitting procedure is applied to a massive complex scalar field with arbitrary curvature coupling interacting with a classical electromagnetic field in a general curved spacetime. The scalar field current is found to have a linear divergence. The presence of the external background gauge field is found to modify the stress-energy tensor results of Christensen for the neutral scalar field by adding terms of the form (eF)2(eF)^2 to the logarithmic counterterms. These results are shown to be expected from an analysis of the degree of divergence of scalar quantum electrodynamics.Comment: 24 pages REVTe

    A report on the piloting of a novel computer-based medical case simulation for teaching and formative assessment of diagnostic laboratory testing

    Get PDF
    Objectives: Insufficient attention has been given to how information from computer-based clinical case simulations is presented, collected, and scored. Research is needed on how best to design such simulations to acquire valid performance assessment data that can act as useful feedback for educational applications. This report describes a study of a new simulation format with design features aimed at improving both its formative assessment feedback and educational function. Methods: Case simulation software (LabCAPS) was developed to target a highly focused and well-defined measurement goal with a response format that allowed objective scoring. Data from an eight-case computer-based performance assessment administered in a pilot study to 13 second-year medical students was analyzed using classical test theory and generalizability analysis. In addition, a similar analysis was conducted on an administration in a less controlled setting, but to a much large sample (n=143), within a clinical course that utilized two random case subsets from a library of 18 cases. Results: Classical test theory case-level item analysis of the pilot assessment yielded an average case discrimination of 0.37, and all eight cases were positively discriminating (range=0.11–0.56). Classical test theory coefficient alpha and the decision study showed the eight-case performance assessment to have an observed reliability of σ=G=0.70. The decision study further demonstrated that a G=0.80 could be attained with approximately 3 h and 15 min of testing. The less-controlled educational application within a large medical class produced a somewhat lower reliability for eight cases (G=0.53). Students gave high ratings to the logic of the simulation interface, its educational value, and to the fidelity of the tasks. Conclusions: LabCAPS software shows the potential to provide formative assessment of medical students’ skill at diagnostic test ordering and to provide valid feedback to learners. The perceived fidelity of the performance tasks and the statistical reliability findings support the validity of using the automated scores for formative assessment and learning. LabCAPS cases appear well designed for use as a scored assignment, for stimulating discussions in small group educational settings, for self-assessment, and for independent learning. Extension of the more highly controlled pilot assessment study with a larger sample will be needed to confirm its reliability in other assessment applications

    Internal Structure of Einstein-Yang-Mills Black Holes

    Get PDF
    It is shown that a generic black hole solution of the SU(2) Einstein-Yang-Mills equations develops a new type of an infinitely oscillating behavior near the singularity. Only for certain discrete values of the event horizon radius exceptional solutions exist, possessing an inner structure of the Schwarzschild or Reissner-Nordstrom type.Comment: 4.5 LaTeX pages, 8 eps figures, uses RevTeX, boxedeps.tex. 4 more typos fixed, a footnote adde

    The Palomar Testbed Interferometer

    Get PDF
    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in July 1995. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40-cm apertures can be combined pair-wise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 um and active delay lines with a range of +/- 38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi

    Palomar Testbed Interferometer

    Get PDF
    The Palomar Testbed Interferometer (PTI) is an infrared, phase-tracking interferometer in operation at Palomar Mountain since July 1995. It was funded by NASA for the purpose of developing techniques and methodologies for doing narrowangle astrometry for the purpose of detecting extrasolar planets. The instrument employs active fringe trackingin the infrared (2.0-2.4 μm) to monitor fringe phase. It is a dual-star interferometer; it is able to measure fringes on two separate stars simultaneously. An end-to-end heterodyne laser metrology system is used to monitor the optical path length of the starlight. Recently completed engineering upgrades have improved the initial instrument performance. These upgrades are:extended wavelength coverage, a single mode fiber for spatial filtering, vacuum pipes to relay the beams, accelerometers on the siderostat mirrors and a new baseline. Results of recent astrometry data indicate the instrument is approaching the astrometric limit as set by the atmosphere
    corecore