30 research outputs found

    Plasma diagnostics in pulsed laser deposition of GaLaS chalcogenides

    No full text
    International audienceThe aim of this work is to characterize the ejection plume obtained by laser ablation of GaLaS (GLS) samples in order to better understand the ablation phenomena for optimizing the pulsed laser deposition of chalcogenide thin films. The dynamics of the plasma between target and substrate was investigated through time- and space-resolved optical emission spectroscopy. High-resolution optical spectra have been recorded in the UV-VIS range using a 500-mm focal length monochromator and a fast gate ICCD camera. From the space-time evolution of the optical signals, the velocities of various species (including neutrals and ions) have been derived. Using the relative intensity method, the space- and time-evolution of the excitation temperature and electronic density have been determined. A complex behavior of the laser ablation plasma has been revealed

    Experimental and Theoretical Studies on the Dynamics of Transient Plasmas Generated by Laser Ablation in Various Temporal Regimes

    Get PDF
    During the last decade, our groups have performed systematic experimental studies on the characterization of plasma plumes generated by laser ablation in various temporal regimes (ns, ps, fs) on materials ranging from simple metals (Al, Cu, Mn, Ni, In, W, …) to more complex compounds (ceramics, chalcogenide glasses, ferrites). Optical (fast imaging and space- and time-resolved emission spectroscopy) and electrical (mainly Langmuir probe) methods have been applied to experimentally investigate the dynamics of the plasma plume and its constituents. Influence of the target physical (thermodynamic and electrical) parameters on the plasma dynamics has been studied. A mathematical correlation between the local and global plasma parameters and the physical properties of the target was proposed for the first time. Peculiar behaviors like plume splitting or plasma oscillations have been evidenced for high laser fluence ablation in vacuum. Along with results from the literature, our findings provide convincing arguments for the existence of multiple double-layers in the laser ablation plasma plume, in a scenario including two-temperature electrons. New fractal-based theoretical approaches have been developed to qualitatively and quantitatively account for the observed phenomena. The space and time evolution of expansion velocity, particle number, current density and plasma temperature were theoretically investigated

    Oscillatory behavior of hollow grid cathode discharges

    Get PDF
    Multiple complex space-charge structures in unmagnetized low-temperature plasmas arise from ionization phenomena near additional negatively or positively biased electrodes or due to local constraints. Because of their usually spherical form, such structures are called fireballs. If they appear inside hollow grids, they are called inverted fireballs or plasma bubbles. The temporal evolution of such structures is often accompanied by strong plasma instabilities. The dynamics of complex space-charge structures have been investigated by using single spherical grid cathode with an orifice. Langmuir probe and optical emission spectroscopy were used to diagnose the structures. Measurements delivered the axial profiles of the plasma potential, electron temperature and density, and the densities of excited atoms and ions, that confirmed the formation of a fireball in the region near the orifice (also evidenced by visual observation). Inside the grid, a plasma bubble has developed, with a high ion density inside due to the hollow cathode effect. Information on the nonlinear dynamics of the complex space charge structures was obtained from the analysis of the oscillations of the discharge current

    Septicemic Outbreak in A Rainbow Trout Intensive Aquaculture System: Clinical Finds, Etiological Agents, and Predisposing Factors

    Get PDF
    On the 23rd of September 2022, a small intensive aquaculture unit populated with rainbow trout (Oncorhynchus mykiss) reported increased mortality in adults and juvenile fish. The unit comprised 12 enclosed concrete basins with a capacity of ten cubic meters of water, populated with 150 kg of fish each. Fish were subjected to a clinical examination on the site, after which whole fish were harvested for a bacteriological and histopathological examination. Water quality parameters were examined using classic biochemical methods and Fourier Transform Infrared Spectroscopy in order to find out whether the environment in which the fish live is also a predisposing factor that could facilitate different pathogens and induce a state of disease in the fish. Real-time PCR was performed on strains of Aeromonas spp. sampled from the fish to accurately identify the pathogen species. The goal was to accurately identify the problems and predisposing factors that lead to disease outbreaks

    Laser Ablation Transient Plasma Structures Expansion in Vacuum

    No full text

    Investigations of Transient Plasma Generated by Laser Ablation of Hydroxyapatite during the Pulsed Laser Deposition Process

    No full text
    The optimization of the pulsed laser deposition process was attempted here for the generation of hydroxyapatite thin films. The deposition process was monitored with an ICCD (Intensified Coupled Charged Device) fast gated camera and a high-resolution spectrometer. The global dynamics of the laser produced plasma showed a self-structuring into three components with different composition and kinetics. The optical emission spectroscopy revealed the formation of a stoichiometric plasma and proved that the segregation in the kinetic energy of the plasma structure is also reflected by the individual energies of the ejected particles. Atomic Force Microscopy was also implemented to investigate the properties and the quality of the deposited film. The presence of micrometric clusters was seen at a high laser fluence deposition with in-situ ICCD imaging. We developed a fractal model based on Schrödinger type functionalities. The model can cover the distribution of the excited states in the laser produced plasma. Moreover, we proved that SL(2R) invariance can facilitate plasma substructures synchronization through a self-modulation in amplitude

    On the Deposition Process of Ceramic Layer Thin Films for Low-Carbon Steel Pipe Protection

    No full text
    Ceramic thin films with variable thicknesses have been used in many applications. In order to protect the petroleum transportation pipes against the harmful H2S action, two ceramic materials as thin layers are proposed. In this article, pulsed laser deposition (PLD) of ceramic layers by in situ time-resolved optical techniques is investigated. Two ceramic materials were used as targets and real-time monitoring of the PLD process was realized via ICCD fast camera imaging and optical emission spectroscopy. The space–time displacement of the ceramic emissions was analyzed in order to determine the plasma structure and respective kinetic energies. Spectral-resolved investigation allowed the determination of plasma species individual velocities (in the first case: 43 km/s for C ionic species, 11 km/s for Si, from 25 to 5 km/s for atomic species; in the second case: 32 km/s for C ionic species, 11 km/s for W species, and 15 and 53 km/s for neutral species). SEM and AFM techniques were implemented to analyze the resulting ceramic layers showing homogeneous surfaces with characteristic material droplets. The ablation crater also reveals selective ablation during the deposition process. EDX results show that Al/Si is retained in the thin films similar to the target composition

    Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    No full text
    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc

    LIBS in a Running Hall Effect Thruster for Space Propulsion

    No full text
    [Post-Publication EMSLIBS 2011]International audienc
    corecore