209 research outputs found

    Air pollution, epigenetics, and asthma

    Get PDF
    Exposure to traffic-related air pollution (TRAP) has been implicated in asthma development, persistence, and exacerbation. This exposure is highly significant as large segments of the global population resides in zones that are most impacted by TRAP and schools are often located in high TRAP exposure areas. Recent findings shed new light on the epigenetic mechanisms by which exposure to traffic pollution may contribute to the development and persistence of asthma. In order to delineate TRAP induced effects on the epigenome, utilization of newly available innovative methods to assess and quantify traffic pollution will be needed to accurately quantify exposure. This review will summarize the most recent findings in each of these areas. Although there is considerable evidence that TRAP plays a role in asthma, heterogeneity in both the definitions of TRAP exposure and asthma outcomes has led to confusion in the field. Novel information regarding molecular characterization of asthma phenotypes, TRAP exposure assessment methods, and epigenetics are revolutionizing the field. Application of these new findings will accelerate the field and the development of new strategies for interventions to combat TRAP-induced asthma

    Leveraging Multilayered “Omics” Data for Atopic Dermatitis: A Road Map to Precision Medicine

    Get PDF
    Atopic dermatitis (AD) is a complex multifactorial inflammatory skin disease that affects ~280 million people worldwide. About 85% of AD cases begin in childhood, a significant portion of which can persist into adulthood. Moreover, a typical progression of children with AD to food allergy, asthma or allergic rhinitis has been reported (“allergic march” or “atopic march”). AD comprises highly heterogeneous sub-phenotypes/endotypes resulting from complex interplay between intrinsic and extrinsic factors, such as environmental stimuli, and genetic factors regulating cutaneous functions (impaired barrier function, epidermal lipid, and protease abnormalities), immune functions and the microbiome. Though the roles of high-throughput “omics” integrations in defining endotypes are recognized, current analyses are primarily based on individual omics data and using binary clinical outcomes. Although individual omics analysis, such as genome-wide association studies (GWAS), can effectively map variants correlated with AD, the majority of the heritability and the functional relevance of discovered variants are not explained or known by the identified variants. The limited success of singular approaches underscores the need for holistic and integrated approaches to investigate complex phenotypes using trans-omics data integration strategies. Integrating omics layers (e.g., genome, epigenome, transcriptome, proteome, metabolome, lipidome, exposome, microbiome), which often have complementary and synergistic effects, might provide the opportunity to capture the flow of information underlying AD disease manifestation. Overlapping genes/candidates derived from multiple omics types include FLG, SPINK5, S100A8, and SERPINB3 in AD pathogenesis. Overlapping pathways include macrophage, endothelial cell and fibroblast activation pathways, in addition to well-known Th1/Th2 and NFkB activation pathways. Interestingly, there was more multi-omics overlap at the pathway level than gene level. Further analysis of multi-omics overlap at the tissue level showed that among 30 tissue types from the GTEx database, skin and esophagus were significantly enriched, indicating the biological interconnection between AD and food allergy. The present work explores multi-omics integration and provides new biological insights to better define the biological basis of AD etiology and confirm previously reported AD genes/pathways. In this context, we also discuss opportunities and challenges introduced by “big omics data” and their integration

    Association of citrulline concentration at birth with lower respiratory tract infection in infancy: Findings from a multi-site birth cohort study

    Get PDF
    Assessing the association of the newborn metabolic state with severity of subsequent respiratory tract infection may provide important insights on infection pathogenesis. In this multi-site birth cohort study, we identified newborn metabolites associated with lower respiratory tract infection (LRTI) in the first year of life in a discovery cohort and assessed for replication in two independent cohorts. Increased citrulline concentration was associated with decreased odds of LRTI (discovery cohort: aOR 0.83 [95% CI 0.70-0.99], p = 0.04; replication cohorts: aOR 0.58 [95% CI 0.28-1.22], p = 0.15). While our findings require further replication and investigation of mechanisms of action, they identify a novel target for LRTI prevention and treatment

    The Children's Respiratory and Environmental Workgroup (CREW) birth cohort consortium: design, methods, and study population

    Get PDF
    Background: Single birth cohort studies have been the basis for many discoveries about early life risk factors for childhood asthma but are limited in scope by sample size and characteristics of the local environment and population. The Children’s Respiratory and Environmental Workgroup (CREW) was established to integrate multiple established asthma birth cohorts and to investigate asthma phenotypes and associated causal pathways (endotypes), focusing on how they are influenced by interactions between genetics, lifestyle, and environmental exposures during the prenatal period and early childhood. Methods and results: CREW is funded by the NIH Environmental influences on Child Health Outcomes (ECHO) program, and consists of 12 individual cohorts and three additional scientific centers. The CREW study population is diverse in terms of race, ethnicity, geographical distribution, and year of recruitment. We hypothesize that there are phenotypes in childhood asthma that differ based on clinical characteristics and underlying molecular mechanisms. Furthermore, we propose that asthma endotypes and their defining biomarkers can be identified based on personal and early life environmental risk factors. CREW has three phases: 1) to pool and harmonize existing data from each cohort, 2) to collect new data using standardized procedures, and 3) to enroll new families during the prenatal period to supplement and enrich extant data and enable unified systems approaches for identifying asthma phenotypes and endotypes. Conclusions: The overall goal of CREW program is to develop a better understanding of how early life environmental exposures and host factors interact to promote the development of specific asthma endotypes.HHS/NIH [5UG3OD023282]; Columbia University [P01ES09600, R01 ES008977, P30ES09089, R01 ES013163, R827027]; Tucson Children's Respiratory Study (TCRS) [NHLBI 132523]; Infant Immune Study (IIS) [HL-56177]; Childhood Origins of Asthma Study (COAST) [P01 HL070831, U10 HL064305, R01 HL061879]; Wayne County Health, Environment, Allergy and Asthma Longitudinal Study (WHEALS) [R01 AI050681, R56 AI050681, R01 AI061774, R21 AI059415, K01 AI070606, R21 AI069271, R01 HL113010, R21 ES022321, P01 AI089473, R21 AI080066, R01 AI110450, R01 HD082147]; Fund for Henry Ford Health System; Childhood Allergy Study (CAS) [R01 AI024156, R03 HL067427, R01 AI051598]; Blue Cross Foundation Johnson; Fund for Henry Ford Hospital; Microbes, Allergy, Asthma and Pets (MAAP) [P01 AI089473]; Infant Susceptibility to Pulmonary Infections and Asthma following RSV Exposure (INSPIRE) [NIH/NIAID U19 AI 095227, NIH/NCATS UL1 TR 002243, NIH/NIAID K24 AI 077930, NIH/NHLBI R21 HD 087864, NIH/NHLBI X01 HL 134583]; Wisconsin Infant Study Cohort (WISC) [U19 AI104317, NCATS UL1TR000427]; Upper Midwest Agricultural Safety and Health Center (UMASH) [U54 OH010170]; RTI International, Research Triangle Park, North Carolina, USA; NIH [U24OD023382]; Urban Environment and Childhood Asthma Study (URECA) [NO1-AI-25482, HHSN272200900052C, HHSN272201000052I, NCRR/NIH RR00052, M01RR00533, 1UL1RR025771, M01RR00071, 1UL1RR024156, UL1TR001079, 5UL1RR024992-02, NCATS/NIH UL1TR000040]; Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) [R01 ES11170, R01 ES019890]; Epidemiology of Home Allergens and Asthma Study (EHAAS) [R01 AI035786]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Inducible expression quantitative trait locus analysis of the MUC5AC gene in asthma in urban populations of children

    Get PDF
    BACKGROUND: Mucus plugging can worsen asthma control, lead to reduced lung function and fatal exacerbations. MUC5AC is the secretory mucin implicated in mucus plugging, and MUC5AC gene expression has been associated with development of airway obstruction and asthma exacerbations in urban children with asthma. However, the genetic determinants of MUC5AC expression are not established. OBJECTIVE: To assess single-nucleotide polymorphisms (SNPs) that influence MUC5AC expression and relate to pulmonary functions in childhood asthma. METHODS: We used RNA-sequencing data from upper airway samples and performed cis-expression quantitative trait loci (eQTL) and allele specific expression (ASE) analyses in two cohorts of predominantly Black and Hispanic urban children, a high asthma-risk birth cohort and an exacerbation-prone asthma cohort. We further investigated inducible MUC5AC eQTLs during incipient asthma exacerbations. We tested significant eQTLs SNPs for associations with lung function measurements and investigated their functional consequences in DNA regulatory databases. RESULTS: We identified two independent groups of SNPs in the MUC5AC gene that were significantly associated with MUC5AC expression. Moreover, these SNPs showed stronger eQTL associations with MUC5AC expression during asthma exacerbations, consistent with inducible expression. SNPs in one group also showed significant association with decreased pulmonary functions. These SNPs included multiple EGR1 transcription factor binding sites suggesting a mechanism of effect. CONCLUSIONS: These findings demonstrate the applicability of organ specific RNA-sequencing data to determine genetic factors contributing to a key disease pathway. Specifically, they suggest important genetic variations that may underlie propensity to mucus plugging in asthma and could be important in targeted asthma phenotyping and disease management strategies

    Heterogeneity of magnitude, allergen immunodominance, and cytokine polarization of cockroach allergen-specific T cell responses in allergic sensitized children.

    Get PDF
    Background: Characterization of allergic responses to cockroach (CR), a common aeroallergen associated with asthma, has focused mainly on IgE reactivity, but little is known about T cell responses, particularly in children. We conducted a functional evaluation of CR allergen-specific T cell reactivity in a cohort of CR allergic children with asthma. Methods: Peripheral blood mononuclear cells (PBMCs) were obtained from 71 children, with mild-to-moderate asthma who were enrolled in a CR immunotherapy (IT) clinical trial, prior to treatment initiation. PBMC were stimulated with peptide pools derived from 11 CR allergens, and CD4+ T cell responses assessed by intracellular cytokine staining. Results: Highly heterogeneous responses in T cell reactivity were observed among participants, both in terms of the magnitude of cytokine response and allergen immunodominance. Reactivity against Bla g 9 and Bla g 5 was most frequent. The phenotype of the T cell response was dominated by IL-4 production and a Th2 polarized profile in 54.9% of participants, but IFNÎł production and Th1 polarization was observed in 25.3% of the participants. The numbers of regulatory CD4+ T cells were also highly variable and the magnitude of effector responses and Th2 polarization were positively correlated with serum IgE levels specific to a clinical CR extract. Conclusions: Our results demonstrate that in children with mild-to-moderate asthma, CR-specific T cell responses display a wide range of magnitude, allergen dominance, and polarization. These results will enable examination of whether any of the variables measured are affected by IT and/or are predictive of clinical outcomes

    Differences in Candidate Gene Association between European Ancestry and African American Asthmatic Children

    Get PDF
    Candidate gene case-control studies have identified several single nucleotide polymorphisms (SNPs) that are associated with asthma susceptibility. Most of these studies have been restricted to evaluations of specific SNPs within a single gene and within populations from European ancestry. Recently, there is increasing interest in understanding racial differences in genetic risk associated with childhood asthma. Our aim was to compare association patterns of asthma candidate genes between children of European and African ancestry.Using a custom-designed Illumina SNP array, we genotyped 1,485 children within the Greater Cincinnati Pediatric Clinic Repository and Cincinnati Genomic Control Cohort for 259 SNPs in 28 genes and evaluated their associations with asthma. We identified 14 SNPs located in 6 genes that were significantly associated (p-values <0.05) with childhood asthma in African Americans. Among Caucasians, 13 SNPs in 5 genes were associated with childhood asthma. Two SNPs in IL4 were associated with asthma in both races (p-values <0.05). Gene-gene interaction studies identified race specific sets of genes that best discriminate between asthmatic children and non-allergic controls.We identified IL4 as having a role in asthma susceptibility in both African American and Caucasian children. However, while IL4 SNPs were associated with asthma in asthmatic children with European and African ancestry, the relative contributions of the most replicated asthma-associated SNPs varied by ancestry. These data provides valuable insights into the pathways that may predispose to asthma in individuals with European vs. African ancestry

    Functional Variant in the Autophagy-Related 5 Gene Promotor is Associated with Childhood Asthma

    Get PDF
    Rationale and Objective: Autophagy is a cellular process directed at eliminating or recycling cellular proteins. Recently, the autophagy pathway has been implicated in immune dysfunction, the pathogenesis of inflammatory disorders, and response to viral infection. Associations between two genes in the autophagy pathway, ATG5 and ATG7, with childhood asthma were investigated. Methods: Using genetic and experimental approaches, we examined the association of 13 HapMap-derived tagging SNPs in ATG5 and ATG7 with childhood asthma in 312 asthmatic and 246 non-allergic control children. We confirmed our findings by using independent cohorts and imputation analysis. Finally, we evaluated the functional relevance of a disease associated SNP. Measurements and Main Results: We demonstrated that ATG5 single nucleotide polymorphisms rs12201458 and rs510432 were associated with asthma (p = 0.00085 and 0.0025, respectively). In three independent cohorts, additional variants in ATG5 in the same LD block were associated with asthma (p,0.05). We found that rs510432 was functionally relevant and conferred significantly increased promotor activity. Furthermore, Atg5 expression was increased in nasal epithelium of acute asthmatics compared to stable asthmatics and non-asthmatic controls. Conclusion: Genetic variants in ATG5, including a functional promotor variant, are associated with childhood asthma. Thes

    African-specific alleles modify risk for asthma at the 17q12-q21 locus in African Americans

    Get PDF
    BACKGROUND: Asthma is the most common chronic disease in children, occurring at higher frequencies and with more severe disease in children with African ancestry. METHODS: We tested for association with haplotypes at the most replicated and significant childhood-onset asthma locus at 17q12-q21 and asthma in European American and African American children. Following this, we used whole-genome sequencing data from 1060 African American and 100 European American individuals to identify novel variants on a high-risk African American-specific haplotype. We characterized these variants in silico using gene expression and ATAC-seq data from airway epithelial cells, functional annotations from ENCODE, and promoter capture (pc)Hi-C maps in airway epithelial cells. Candidate causal variants were then assessed for correlation with asthma-associated phenotypes in African American children and adults. RESULTS: Our studies revealed nine novel African-specific common variants, enriched on a high-risk asthma haplotype, which regulated the expression of GSDMA in airway epithelial cells and were associated with features of severe asthma. Using ENCODE annotations, ATAC-seq, and pcHi-C, we narrowed the associations to two candidate causal variants that are associated with features of T2 low severe asthma. CONCLUSIONS: Previously unknown genetic variation at the 17q12-21 childhood-onset asthma locus contributes to asthma severity in individuals with African ancestries. We suggest that many other population-specific variants that have not been discovered in GWAS contribute to the genetic risk for asthma and other common diseases
    • …
    corecore