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Atopic dermatitis (AD) is a complex multifactorial inflammatory skin disease that

affects ∼280 million people worldwide. About 85% of AD cases begin in childhood,

a significant portion of which can persist into adulthood. Moreover, a typical

progression of children with AD to food allergy, asthma or allergic rhinitis has been

reported (“allergic march” or “atopic march”). AD comprises highly heterogeneous

sub-phenotypes/endotypes resulting from complex interplay between intrinsic and

extrinsic factors, such as environmental stimuli, and genetic factors regulating cutaneous

functions (impaired barrier function, epidermal lipid, and protease abnormalities),

immune functions and the microbiome. Though the roles of high-throughput “omics”

integrations in defining endotypes are recognized, current analyses are primarily

based on individual omics data and using binary clinical outcomes. Although

individual omics analysis, such as genome-wide association studies (GWAS), can

effectively map variants correlated with AD, the majority of the heritability and

the functional relevance of discovered variants are not explained or known by

the identified variants. The limited success of singular approaches underscores the

need for holistic and integrated approaches to investigate complex phenotypes

using trans-omics data integration strategies. Integrating omics layers (e.g., genome,

epigenome, transcriptome, proteome, metabolome, lipidome, exposome, microbiome),

which often have complementary and synergistic effects, might provide the opportunity

to capture the flow of information underlying AD disease manifestation. Overlapping

genes/candidates derived from multiple omics types include FLG, SPINK5, S100A8,

and SERPINB3 in AD pathogenesis. Overlapping pathways include macrophage,

endothelial cell and fibroblast activation pathways, in addition to well-known Th1/Th2

and NFkB activation pathways. Interestingly, there was more multi-omics overlap
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at the pathway level than gene level. Further analysis of multi-omics overlap at the

tissue level showed that among 30 tissue types from the GTEx database, skin and

esophagus were significantly enriched, indicating the biological interconnection between

AD and food allergy. The present work explores multi-omics integration and provides

new biological insights to better define the biological basis of AD etiology and confirm

previously reported AD genes/pathways. In this context, we also discuss opportunities

and challenges introduced by “big omics data” and their integration.

Keywords: atopic dermatitis, omics, multi-omics integration, endotypes, biomarkers, bioinformatics, machine

learning, network analysis

BACKGROUND

Atopic dermatitis (AD) is an inflammatory potentially
debilitating skin disease associated with itch and eczematous
lesions. It is primarily characterized by epidermal barrier
dysfunction and immune alterations. Nearly 80% of children
with AD progress to develop food allergy, asthma or rhinitis,
underscoring its public health impact (1–3). Clinically, AD
shows great patient-to-patient variability (probably representing
multiple endophenotypes) and is associated with a wide range of
abnormalities such as epidermal lipid and protease abnormalities,
compromised cutaneous barrier function and inflammation.
AD is diagnosed using patient history and visual assessment
of the skin (as no specific laboratory test is available) and
frequently managed with topical moisturizers, corticosteroids
or calcineurin inhibitors—none of which are specific to AD
(4, 5). A major gap that has hindered management strategies is
the lack of treatment modalities tailored to the well-defined AD
phenotypes that are still under investigation. It is widely accepted
that integrative approaches linking multiple omics with clinical
and epidemiological data are needed in order to develop better
treatment and prediction models. Emerging biologic therapies,
including cytokine-targeted therapies (e.g., anti–IL-4Rα mAb
Dupilimab and anti–IL-31R mAb Nemolizumab), are costly but
show promising results in patients sub-groups (6–8). Due to
wide clinical variability, both topical and systemic therapies
require better molecular tools/biomarkers for (a) identifying
target patients to choose suitable treatment options and (b)
assessing therapeutic outcomes.

The promise of the multi-omics approach to decipher the
endotypes of complex diseases has been well-described (9), and
several investigators have proposed potential biomarkers and
endotypes for AD using omics resources (10–12). However,
although “omics-level” studies have been very useful in
understanding the mechanism of AD manifestation (Figure 1),
there have not been sufficient data nor attempts to integrate
different omics data. This integration seems essential to
interpret clinical variability and endotyping of AD. The present
work outlines the roles of omics resources (such as genome,
epigenome, transcriptome, proteome, metabolome, lipidome,
exposome, microbiome) as parts of a puzzle and the approaches
to integrate these layers and obtain an integrated systems-level
overview of AD. Integrating multiple layers of omics information
with clinical outcome data will be helpful in capturing the

etiology of AD and its endotypes that can be useful in managing
of this condition.

THE PATHOBIOLOGY OF AD IS
INCOMPLETELY UNDERSTOOD

AD has been renamed more than twenty times within the last
125 years, reflecting its wide clinical, genetic, and immunologic
variability (11, 13). It is a disease of multifactorial etiology
involving complex immunologic and inflammatory pathways
(13, 14). The etiology of AD has been described using
two opposing yet overlapping hypotheses. The “inside-out
hypothesis” suggests that type 2 immune activation precedes
cutaneous barrier impairment. Experimental data showing
down-regulation of skin barrier genes by immune cytokines
and mediators supports this hypothesis (15, 16). However,
this hypothesis does not adequately explain the root cause
of systemic inflammation, only highlighting the relevance of
classical adaptive TH2 cells, in causing barrier dysfunction. In
contrast, the “outside-in hypothesis” suggests that a broad skin
barrier dysfunction, which precedes inflammation, is required for
the manifestation of AD (16). This model is largely supported by
data showing that the loss-of-function mutations in the filaggrin
gene are linked to a subpopulation of AD patients (17). This
outside-in hypothesis explains the causative role of epithelial
barrier function in a subset of patients, as only about 20% of
Northern European and Asian patients with AD bear known
underlying defects in the barrier function, such as filaggrin
mutations (compared to ∼10% in non-AD population) (18).
Moreover, in a study conducted by our group, ∼39% of children
with at least one parent with atopy developed AD by 3 years of
age (19). This cannot be explained by FLGmutation alone, as only
about 10% of AD cases could be projected from this mutation in
general population (20). Thus, the “outside-in hypothesis” does
not sufficiently explain the etiology of AD, showing the need to
interrogate AD using novel approaches such as omics integration.

BIOLOGICAL VARIABILITY AND
ENDOTYPES—CHALLENGES IN THE
MANAGEMENT OF AD

AD is clinically heterogeneous and lacks standardized laboratory
assessment approaches. In the absence of a specific laboratory test
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FIGURE 1 | Conceptual biologic model for AD. Functional dysregulation in AD investigated using different omics techniques has been shown. AD skin is characterized

by barrier dysfunction, inflammation and bacterial infection and associated with symptoms such as dry skin, itch, and inflammation. Genomic studies identified

candidate genes that can be linked to transcriptomic studies. Some results also indicated the role of epigenetic modifications in AD, whereas transcriptomic studies

identified functional clusters of genes related to AD pathogenesis. Differentially regulated genes of these functional clusters can be correlated with the results obtained

from proteomic and lipidomic studies. On the other hand, differential regulation of innate immune genes and proteins can influence microbial diversity of the skin,

which can also contribute to AD pathogenesis.

to diagnose AD, evaluating the severity and treatment outcomes
in AD patients are currently dependent on visually assessing the
skin using clinical scoring such as EASI or SCORAD. However,
these scoring systems are time-consuming and subject to human
error (21). Recent efforts are also being made to incorporate
cutaneous barrier function (determined by trans-epidermal
water loss [TEWL]) and atopic status (cutaneous reactions to
allergens, as measured by serum allergen-specific IgE with or
without total IgE). The assessment is further complicated by
factors such as (a) clinical variations, (b) age and ancestry/genetic
variations of the subjects, and (c) experimental and omics-level
variations. Heterogeneity in patients with AD concerning clinical
features, age of onset, and genetic background has been studied
by several groups (described below). Differences in sample
collection (full thickness biopsy vs. skin stripping) and processing
and tissue (blood vs. skin) used in the assays are known sources of
data variability. Finally, investigators have used different “omics”
tools (e.g., genomics, epigenomics, transcriptomics, proteomics)
to study complex disease conditions like AD and generate

potential omics candidates (e.g., candidate genes, transcripts,
proteins, lipid mediators). However, thus far, there is little
effort to either integrate the omics datasets or explore the
overlap between omics candidates, which could potentially
reduce variability.

The clinical variability in AD has been extensively reviewed
by Bieber et al. (22). Interestingly, though both lesional and
non-lesional AD demonstrate epidermal barrier defects as
demonstrated by higher TEWL, significantly elevated allergen-
specific serum IgE may (extrinsic AD; most frequent) or may
not (intrinsic AD; also called non-atopic eczema) be present
in symptomatic patients, indicative of two distinct subtypes,
with higher IL-17 levels in intrinsic AD (23–25). Clinical
phenotypic variability in AD may include time of disease
onset (infancy, adolescence, adulthood), likelihood of persistence
into adulthood, severity (mild-moderate, severe), co-existence
of other allergic disease, co-existence of mendelian disorders
associated with AD (e.g., Netherton’s syndrome), IgE-mediated
food or aeroallergen sensitization, presence of Staphylococcus
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aureus colonization and presence or absence of viral infections
(e.g., eczema herpeticum) (22, 26).

In addition to clinical heterogeneity, the roles of age, gender,
and race on manifestation/variability of AD symptoms have
also been recognized. Esaki et al. demonstrated that young
patients with AD (0–3 years old) may have a distinct immune
activation pattern compared to that of older children with AD
(27). Additionally, recent data indicated a relationship between
a patient’s ancestry and the underlying immune activation in
AD. Noda et al. pointed out that Asian patients with extrinsic
AD showed a phenotype with increased elongated epidermal
rete ridges and parakeratosis similar to psoriasis (28). Skin
biopsy specimens from Asian patients showed TH17/TH22-
dominance compared to European American patients. The
immune activation pattern in other ethnicities, such as African
American, remains to be elucidated. Similar to clinical, age and
race variability, treatment response variability is observed for
AD. For example, promising yet variable response to treatments
has been demonstrated in Dupilumab trials (reduction in
Global Assessment score to 0 or 1 in 38% of patients) (7,
26, 29–31). Collectively, clinical, age, and race variability,
along with differential response to treatment, in patients
with AD demonstrated the need for patient-tailored treatment
strategies (29).

Several endotypes of AD have been proposed on the basis of
omics data (22). For example, Thijs et al. (12) analyzed 147 serum
analytes (representing biomarkers for apoptosis, chemokines,
growth factors, complement activation, epithelial cytokines,
galectins, glucose regulation, immunomodulatory cytokines,
inflammatory biomarkers, innate immunity biomarkers,
leukocyte migration biomarkers, neutrophil/granulocyte
biomarkers, proteases, and protease inhibitors, remodeling
biomarkers, TH2 cytokines, vascular regulation, viral response
and serum total and allergen-specific IgE) obtained from
patients with moderate to severe AD (n = 200). A group of
healthy, non-atopic subjects (n= 30) were used as controls.
Principal component analysis revealed four clusters, each
potentially representing a distinct endotype (12). However,
neither candidate-focused nor global/omics-level information
have been provided from other layers (e.g., epidermal
differentiation complex gene variants, methylation, epidermal
lipid composition, cutaneous Staphylococcus infection). Though
serum-based studies provided useful hints about probable
endotypes, interrogating more than one omic layers would be
useful to better understand the root causes of clinical variability
in AD.

Although a number of potential endotypes were suggested
for AD on the basis of clinical phenotypes, the biomarkers for
AD and AD endotypes are still under investigation. Biomarkers
derived from an individual “omics” layer may not be sufficient
to define all endotypes, underscoring the need to better connect
candidate biomarkers to achieve an integrated systems-level
view of AD pathogenesis and endotypes. Thus far, there are
no specific treatments, nor biomarkers, particularly indicated
for specific AD endotypes. Research is needed to connect AD
endotypes suggested from studies involving individual “omics”
layers.

UNRAVELING THE PIECES OF THE AD
PUZZLE: ROLE OF OMICS

Omics approaches have been applied to interrogate patient
samples to identify endotypes and associated biomarker(s). Most
studies, however, are restricted to only one omics layer, such
as genomics or serum proteomics (12). Results interrogating
multi-omics data, such as microbiome, proteome, lipidome,
transcriptome, epigenome, exposome, and genome, are largely
lacking. Publicly accessible databases can serve as powerful
resources of omics-level data to unravel new biological insights
into the etiology of AD and to confirm previously reported AD
genes and pathways (32).

Genomics Data
International collaborative efforts have generated genome
informatic resources and databases, such as HapMap, 1000
genome and dbSNP, that are accessible to researchers searching
for gene variants, mutations and other population genetics
information. The genome-wide association study (GWAS)
catalog (https://www.ebi.ac.uk/gwas/) represents a database of
published GWAS. There are at least 12 GWAS for AD. Mining
the GWAS catalog using “AD” as the query term showed
genes (FLG, KIF3A) that are also known as AD-relevant genes
from global expression studies (33–35). Interestingly, all GWAS
indicated that AD is associated with immune regulation genes
and cutaneous barrier function genes as indicated in Table 1 (43–
47). In addition, a recent GWAS has indicated that asthma, hay
fever and eczema partly coexist owing to their shared genetic
risk variants leading to dysregulated expression of immune-
related genes (48). AD-associated genes can be retrieved from the
GWAS catalog and used for an enrichment analysis to identify
significant disease-associated pathways. Molecular and cellular
biologists may also query specific genetic variants for levels
of gene expression in different tissues by searching GTEx and
pathways from KEGG and Reactome (49–52).

Apart from the well-known null mutation, a general down-
regulation of filaggrin (FLG) expression has been reported in
AD (53, 54). FLG is the gene most replicated in AD GWAS
among multiple ethnic groups. It is located in the chromosome
1q21 region, which represents a gene cluster encoding proteins
involved in the epidermal differentiation. Clinical data indicate
that FLG loss-of-function mutations may represent a patient sub-
population with severe, early onset, extrinsic AD that may persist
into adulthood (55). On the other hand, KIF3A is a member of
the kinesin superfamily of microtubule-associated motors and is
important for transporting protein complexes within cilia (56).
Down-regulation of this protein may be related to insufficient
aeroallergen clearance (56). Recent association studies have
linked KIF3A with AD (57, 58) and childhood asthma (59).
Although single-nucleotide polymorphisms (SNPs) have been
identified for AD from GWAS, the functional implications and
mechanisms of the associated loci are largely unknown. Genomic
variants alone are not able to explain the changes in disease
risk along an individual’s entire life span. DNA, RNA, protein,
and their metabolites often have complementary roles to jointly
perform a certain biological function.
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TABLE 1 | AD genome-wide association studies.

Associated gene Location Function References

C11orf30, LRRC32 11q13.5 Immune regulatory Esparza-Gordillo et al. (36)

FLG 1p21.3 Skin barrier Sun et al. (37)

SLC25A46, SLC7A9 5q11.1 Solute carrier function

TMEM232 5q11.2 Integral membrane function

TNFRSF6B, ZGPAT 20q13.3 Immune response

OVOL1 11q13 Skin barrier Paternoster et al. (34)

ACTL9 19p13.2 function not clearly defined

KIF3A, IL4, IL13 5q31 Intracellular transport, Cytokine

IL1RL1, IL18R1, 2q12 Immune response Hirota et al. (38)

CCR4, GLB1 3p21.33 Immune response

CCDC80 3q13.2 Skin barrier

MHC region 6p21.3 Immune response

CARD11 7p22 Immune response

ZNF365, EGR2 10q21.2 Immune regulatory

OR10A3, NLRP10 11p15.4 Immune response

CYP24A1, PFDN4 20q13 Vitamin D pathway

BAT1 6p21.33 Solute binding, enzymatic Weidinger et al. (39)

CREBL1 6p21.33 Protein binding, regulatory.

TNXB 6p21.33 Protein binding

LCE3E 1q21.3 Protein binding, structural Paternoster et al. (40)

MRPS21 1q21.2 RNA-binding, Ribosomal

IL7R 5p13.2 Cytokine function

IL2RA 10p15.1 Cytokine function

ZBTB10 8q21.13 DNA binding, regulatory

SFMBT1 3p21.1 Histone binding, regulatory

VAX2 2p13.3 DNA binding

PCDH9 13q21.31 Intracellular contact Kim et al. (41)

NBAS 2p24.3 Cellular transport

THEMIS 6q22.33 T-cell regulation, function

SCAPER 15q24.3 DNA-binding, CDK2 regulation

GATA-3 10p14 Transcription factor

PRR5L 11p12 Regulatory, mTORC2 associated Schaarschmidt et al. (42)

CLEC16A 16p13.13 Regulator of mitophagy

GWA STUDIES involving AD have identified immune regulation genes and cutaneous barrier function genes. Principal AD-relevant candidate genes identified from GWAS, their

chromosomal location and functions have been mentioned.

Epigenomics Data
Epigenetic data can lead to information regarding heritable
changes (methylation, histone modification and non-coding
RNA-mediated gene silencing etc.) expression without involving
modifications in the DNA sequence. Potential roles of epigenetic
modifications in allergic diseases has recently been highlighted
(60). A limited number of studies at the epigenome scale have
been performed on samples from patients with AD to identify
epigenetic signatures related to this condition. Hypomethylation
of the promoters of TSLP and FCERG (encodes FcεRγ, a high-
affinity IgE receptor chain) are responsible for over-expression
of these genes in AD (61). Rodriguez et al. described significant
methylation differences for various CpG sites between lesional
AD skin samples vs. healthy control skin. These methylation
differences partially correlated with differences in transcript
levels of epidermal differentiation and innate immune function

genes (62). Transcriptome data from this study can be obtained
from NCBI GEO (GSE 60709) and used to identify pathway-level
changes between lesional and non-lesional AD associated with
detected epigenomic alterations.

Overexpression of the high-affinity IgE receptor onmonocytes
and dendritic cells can contribute to AD manifestation
(63). Monocytes from patients with AD showed global-,
as well as locus-specific hypomethylation at the FCERG
promoter, compared to monocytes from healthy control subjects.
Interestingly, this hypermethylation is inversely correlated with
FCERG expression. Ziyab et al. also reported the synergistic roles
of FLG genetic variants and differential DNA methylation on
the development of AD (64). In another study, no significant
difference was observed in genome-wide DNAmethylation levels
of whole blood, T cell, and B cell samples obtained fromAD cases
and controls (62). However, DNA methylation differences were
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not correlated in blood and skin samples, indicating that blood
may not be an ideal surrogate for skin, but show the potential
involvement of epigenetic factors in AD (62). In addition, two
preliminary studies regarding the role of FLG methylation on
allergy and AD were performed using buccal cell DNA or whole
blood DNA and yielded conflicting results, potentially indicating
the roles of tissue-specific epigenomic changes (64, 65).

Epigenetic databases, tools and resources are growing rapidly
due to active research in this area, including the NIH Roadmap
Epigenomics Mapping Consortium and the preparation of the
human epigenome atlas (http://www.genboree.org/site/). The
NCBI Epigenomics database was built as a repository for
whole epigenetic data sets and was later merged to Gene
Expression Omnibus (GEO). DiseaseMeth (http://202.97.205.
78/diseasemeth/index.html) is a web resource hosting human
disease–related, curated methylome data of more than 175
datasets extracted from methylation arrays and sequencing
results, as well as scattered, aberrant methylation information.
However, there are limited data available on the AD-related
epigenome.

Transcriptomic Data
AD transcriptome has been studied in patient samples cross-
sectionally using microarray-based or RNAseq-based methods
(66–68). Publicly accessible databases, such as NCBI GEO and
EBI (European Bioinformatics Institute) Array Express, can serve
as important resources of transcriptome data (32). Multi-origin
transcriptome data obtained from public databases have been
previously analyzed to obtain valuable insight into the AD
disease profile (69, 70). Using this approach, our group recently
developed a panel of 89 genes that can be used as a transcriptomic
signature for AD (69). These differentially regulated genes were
categorized under the following functional classes: (a) barrier
function–related genes, e.g., LCE2B, LOR; (b) dysregulated lipid
genes, e.g., FADS1, FABP7; (c) chemokine/cytokine genes, e.g.,
CCL17, CCL18; (d) protease and protease-inhibitor genes, e.g.,
KLK5, SERPINB3; (e) genes related to anti-microbial function,
e.g., MSMB, LTF; and (f) genes of diverse metabolic functions,
e.g., ARGAP18. Interestingly, the transcriptional signature from
this unique combination of 89 genes could discriminate AD
from control skin biopsy samples with a very high degree
of predictive accuracy. Another meta-analysis–based study of
the AD transcriptome data identified the relevance of the
atherosclerosis signaling (IL-37, selectin E) pathways combined
with the wide-range lipid and Th2-gene abnormalities in
AD (70).

Proteomic Data
With the availability of quantitative proteomic data resources,
peptide abundance, modifications, and interactions are
increasingly used to analyze molecules secreted by a variety
of immune cells. High-resolution protein separation and mass
spectrometry–based applications have generated a large volume
of proteomic data that are deposited in proteomic databases
for reuse (71, 72). Quantitative proteomic diversity in human
tissues and organs in disease and health has been extensively
investigated resulting in comprehensive human proteome

databases (73, 74). The draft map of the human tissue proteome
has been detected from > 80 % of the annotated protein-coding
genes (75). Though the Human Proteome Project (HPP) was
initiated by the Human Proteome Organization (HUPO) to
understand the entire human proteome at the cellular level,
its biology and disease-oriented branch (named B/D-HPP)
supports state-of-the-art assessments of human proteome in
health and disease (76). The Plasma Proteome Database (PPD)
was developed by the HUPO as a part of the HPP, which shows
great promise in understanding the plasma proteome function
in health and disease (e.g., grouping plasma proteins with
cardiovascular functions and their roles in heart disease) (77–
79). However, thus far, there is no similar initiative to explore
the AD proteome. Searching other proteomic databases, such as
PRIDE (proteomics identifications database) (80–82) and GPM
(global proteome machine) (83, 84), which represent very rich
resources of raw proteomic data, using the search term “atopic
dermatitis,” did not retrieve relevant results (search performed
on 1st September, 2017).

Proteomic data related to AD can also be obtained by
literature search from Uniprot, which is a well-known database
of protein sequences and their functional information, some of
which is derived from DNA sequences. Querying the Uniprot
database using the search terms “atopic dermatitis” AND
“organism:Homo sapiens (Human) [9606]” retrieved 27 AD-
related proteins (retrieved on 1st September 2017). Selected
studies reporting proteomic data are listed in Table 2 (85–87).
In contrast to transcriptomic studies, skin proteomic studies
thus far used skin taping to obtain samples. However, this
method only collects samples from the stratum corneum, the
upper skin layer. Thus, results using skin taping samples may
not be directly comparable to those using full-thickness punch
biopsy skin samples. However, GWA studies strongly indicate
the roles of barrier- and protease functions of the stratum
corneum in the development of AD. Particularly, filaggrin (FLG)
mutations, low profilaggrin/filaggrin monomer expression and
skin protease dysregulation have been found in AD. Comparing
three independent, stratum corneum proteomic datasets, we
identified 20 proteins involved in AD pathogenesis. The proteins
in this set of 20 differentially regulated proteins were unique to
certain datasets or represented in multiple datasets.

Metabolomic Data
Metabolomic approaches use mass spectrometry and high-
resolution proton nuclear magnetic resonance (NMR) to assesses
cellular metabolites of multiple small molecule types (e.g.,<1,200
Da and biochemical intermediates; i.e., metabolites), including
amino acids, fatty acids, carbohydrates or other products
of cellular metabolic functions, in order to explore disease
metabolome related to allergic diseases (92–94). Information
obtained from metabolomics provides useful insights about the
biochemical phenotype (i.e., the metabotype). A limited number
of metabolomic studies has been performed to analyze the AD
metabolome using urine, serum and sweat analyzed by NMR
and liquid chromatography–coupled mass spectrometry. In an
exploratory study using NMR-based spectral analysis followed
by statistical and chemometric approaches, Assfalg et al. noted
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TABLE 2 | Proteomics studies using skin samples obtained from patients with AD.

References Sample Sample collection

method

Detection method AD-specific proteins

identified

(A) PROTEOME-WIDE

Broccardo et al. (85) Stratum corneum Skin stripping Mass spectrometry

Broccardo et al. (86) Stratum corneum Skin stripping Mass spectrometry 153 proteins

Sakabe et al. (87) Stratum corneum Skin stripping Up to 20

layers

Mass spectrometry 421 proteins

(B) PROTEIN-FOCUSED (TO VALIDATE GENE EXPRESSION DATA AT THE PROTEIN LEVEL)

Saaf (88) Full thickness skin Punch biopsy Immuno-histochemistry Socs3, TGase1, TGM1

Zeeuwen (89) Cultured

keratinocytes

Punch biopsy Immuno-histochemistry DEFB4, PI3

Gittler et al. (90) Full thickness skin Punch biopsy Immuno-histochemistry S100A7, S100A8

Suarez-Farinas et al. (91) Full thickness skin Punch biopsy Immuno-histochemistry LOR, FLG, CDSN

Investigators used biopsy or skin taping (stratum corneum) to obtain samples. Proteomics studies were performed to check expression at either the global or candidate protein level

(candidate proteins previously identified from genomics or transcriptomic studies). Sample types, methods and results have been summarized from independent studies.

significant spectral shifts indicative of broad changes in the
AD urine metabolome compared to that of age-matched, non-
atopic controls (95). Subsequently, Huang et al. used high-
performance liquid chromatography–coupledmass spectrometry
to investigate metabolic abnormalities in AD using fasting sera
obtained from children with AD and healthy control subjects.
Subjects with AD with high IgE showed significant differences
in multiple metabolic intermediates, including carnitines, free
fatty acids and lactic acids, indicating metabolic abnormalities.
In contrast, higher levels of cytochrome P450 and epoxygenase
metabolites were reported in the AD group with normal
IgE. Statistical modeling discriminated high IgE AD from
low/normal IgE AD and control samples in scattered plots. In a
targeted metabolome analysis, the investigators analyzed thirty
eicosanoids, which are products of the arachidonic acid pathway
and mediate inflammation.

There are several recently released metabolomic databases
in use. Examples include HMDB (The Human Metabolome
Database), BiGG, and SetupX, among others (96–98) The
HMDB is a publicly accessible database that contains detailed
information regarding small molecule metabolites related to
the human body (96, 99, 100). This database is designed for
applications in metabolomics, clinical chemistry, and biomarker
discovery. However, none of these databases presently contain
AD-focused or atopy-related metabolome data.

Lipidomic Data
Lipidomics involves system-wide identification and quantitation
of lipids with lipid-associated pathways and networks. Lipids
play distinct roles in mediating inflammation, as well as
maintaining the skin moisture content. Genomic, transcriptomic
and proteomic data strongly indicated the involvement of
cutaneous lipid dysregulation in AD. However, only a few studies
have directly addressed AD lipidomics thus far. A recent study
aimed to characterize the lipid mediator profile in sweat samples
obtained from patients with non-lesional AD and non-atopic
controls (n = 23/group) using liquid chromatography–mass
spectroscopy and mass spectroscopy. Increases in the C30–C40

ceramide and C18:1 sphingosine concentrations were found in
AD patients despite no differences in TEWL between study
groups, and this effect was strongest in men. No differences in
oxylipins and endocannabinoids were observed between study
groups. The increases in short-chain lipids do not support the
current report indicating a general ceramide deficiency in AD
(101). However, an imbalance between different ceramide groups
was observed, indicating that ceramide species involved in barrier
function and keratinocyte signaling are dysregulated in AD. Lipid
abnormalities in AD have also been shown using skin and sweat
samples (102–104).

Searchable interactive databases for lipids and lipid-associated
proteins, in combination with mass-spectrometric and other
experimental approaches, offers an opportunity to construct lipid
metabolic networks and to devise therapeutic strategies (105–
108). LMSD (lipid maps structural database) contains structures
and annotations of biologically relevant lipids. Lipidomic
pathways and networks can be constructed from experimental
data. Interrogating the epidermal lipidome has been described
as a tool to assess and predict the progression of inflammatory
skin diseases (109). In spite of the recent reports showing the
roles of epidermal and sweat lipidome in AD, relevant lipidomic
data generated by independent investigators are not usually made
available through publicly accessible databases (104, 110–112).

Microbiome Data
The human skin is colonized by microorganisms, including
bacteria, viruses and fungi, collectively known as the microbiota,
and their genes constitute the microbiome. Skin microbiomes
in AD have been studied in the recent years using samples
obtained during in-flare and out-of-flare conditions (113, 114).
AD treatments can also lead to increased epidermal bacterial
diversity preceding improvements in symptoms. Staphylococcus
sequences (mostly S. aureus) were more abundant during disease
flares (lower microbial diversity), compared to baseline or post-
treatment conditions (higher microbial diversity), and correlated
with disease severity (113, 115). Modern high throughput studies
also indicated a higher representation of skin commensal S.
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epidermidis during flares which was not previously demonstrated
in culture-based studies (113). Increases in Streptococcus,
Propionibacterium, and Corynebacterium species were observed
following therapy. These findings reveal connections between
microbial communities and inflammatory diseases such as AD
and demonstrate that high resolution examination of microbiota
associated with human disease can provide novel insights into
global shifts of bacteria relevant to disease progression and
treatment.

Interestingly, altered epidermal lipid composition has been
found to correlate with the status of S. aureus colonization on
the AD skin (116). In general, a number of studies indicated
a clear difference between AD- and healthy skin microbiome,
which can be associated with disease state, i.e., appearance
of flares (113, 117, 118). AD skin often shows S. aureus
infection, which exacerbates the disease through inflammatory
mechanisms. Microbiome studies indicated that coagulase-
negative Staphylococcus strains having antimicrobial activity are
common in the normal population but rare in subjects with
AD. The antimicrobial activity has been related to previously
unknown antimicrobial peptides produced by coagulase-negative
species such as Staphylococcus epidermidis and Staphylococcus
hominis. Our present knowledge clearly indicates that some
commensal bacteria, that are deficient in AD skin, can protect
against harmful S. aureus infection and can have a great
translational value in reducing infection and inflammation
(119). Another study showed that topical corticosteroids might
influence the lesional AD microbiome, with the post-treatment
AD skin microbiome resembling the non-lesional AD skin
microbiome but both exhibiting distinct characteristics from
the normal skin microbiome (120). Additional studies on gut
microbiome have also suggested that alterations in the gut
microbiome may be associated with an altered host immune
function related to AD.

Over the last few years, identifying the composition of
microbiome has progressed enormously with the application of
high-throughput DNA sequencing technologies based on two
principal methods. The first method is based on sequencing the
16S rRNA gene of bacteria (121). Identifying variations in specific
regions of this gene allows decent classification of bacterial
taxa. 16S is relatively inexpensive, but has limited resolution
(not all bacteria can be classified, species-level identification
may not be possible), nor can the 16S method detect viruses
and eukaryotic communities. The secondmethod, metagenomics
sequencing, is based on sequencing of all DNA fragments and
aligning them to reference databases from all life forms (122).
This approach is capable of identifying bacterial, viral, fungal,
and protozoan DNA. It produces a much better resolution of
bacteria at the species level. However, this method is associated
with high sequencing costs, significant bioinformatic load (due to
the large number of sequence reads produced), and the inability
to analyze genomes not present in the reference databases or
genes with unknown function. The statistical methods widely
used in microbiome analysis mostly derived from ecological
studies, including alpha diversity (diversity of species or other
taxa within a sample) and beta diversity (difference in taxonomic
composition between samples). However, unlike ecological

studies, microbiome researchers are dealing with relatively large
numbers and employ additional multidimensional statistics
and complex statistical approaches, including pathway and
network analysis. The NIH human microbiome project (HMP)
has generated data to interpret the role of the microbiome
in human health and disease. This project has generated
a large volume of publicly accessible metagenomic sequence
data from five major body locations (including skin and gut)
of healthy and disease (preterm birth, inflammatory bowel
disease, and type-2 diabetes) cohorts. More AD-focused data is
required.

Exposome Data
The exposome is defined as the totality of environmental
exposures over the life course, with exposure timings ranging
from prenatal to post-natal periods. It is now well-recognized
that human omics alone cannot explain the rise in allergic
diseases in the industrialized world, clearly indicating the role
of the exposome in allergic diseases including AD (123). Birth
cohort studies indicated that prenatal exposure to antibiotics
through expecting mothers’ antibiotic consumption might be
associated with an increased risk for AD, particularly within
the children of mothers with atopy. Antibiotic exposure also
might occur through breast feeding. Both prenatal and post-
natal exposure to antibiotics may influence intestinal microbial
diversity of the neonates, leading to subsequent manifestation
of atopic diseases (124–126). Other prenatal exposures include
oxidative stress induced by maternal distress (127). maternal
exposure to air pollutants (128, 129), smoke (130, 131), phthalate
(132), cadmium (133), house dust mite (134), house pets, and
farm animal (protective effects) (135).

Numerous studies have been designed to assess the role of
post-natal exposures on AD. There is growing evidence that
the use of hard water might be a risk factor for developing
AD (136–138). According to a recent study, fall/winter birth
season and exposure to hard water were associated with increased
relative prevalence of AD in the first 18 months of life (136).
Other potential factors included meteorological factors (139) and
pollutants (139–141), allergenic grass pollen (142) mold (143,
144), probiotics (145–147), and vitamin D exposure (148–150).
Although, high-throughput techniques have been developed
and have been widely used for omics such as transcriptomics,
proteomics, metabolomics; exposure to environmental stressors
affects each of these components (genes, transcript, proteins,
metabolites). Thus, there is a need to combine omics with
environmental exposure measures to better understand the
complex network of cellular responses to the exposome.

Exposome-Explorer (http://exposome-explorer.iarc.fr) is a
database supported by the World Health Organization. It is
dedicated to biomarkers of exposure to environmental risk
factors (151). It contains detailed information on the nature of
biomarkers (e.g., dietary and pollutant) and their concentrations
in various human samples (e.g., blood, urine). Recently there
is a great interest in exposome studies to identify disease risks.
However, thus far, there are limited data pertinent to AD in
exposome databases.
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OMICS-WIDE INTEGRATION—PUTTING
THE PIECES TOGETHER

Each omics data type typically provides a list of differential
factors potentially associated with the disease. These data can
be useful as disease markers while providing insight as to
which biological pathways or processes are different between
the disease and control groups. However, analysis of only
one omic(s) data type is limited to correlations and provides
a partial view of the biological system. Integrating different
omics data types is often used to elucidate the potential
causative changes that lead to disease or can be used to identify
potential therapeutic targets for further molecular studies. For
example, a GWA study can reveal the statistical associations
between genetic loci and disease status. While it can suggest
potential causal effects, pinpointing particular causal variant(s)
and associated molecular mechanisms can be challenging. On the
other hand, gene expression or epigenomic profiling can detect
associations between disease and genes or epigenomic markers,
but these associations are correlative in nature. By integrating
different types of data, it becomes possible to circumvent the
limitations of individual studies and better identify disease-
causing DNA variants and their downstream molecular targets.
For instance, when DNA and RNA are measured simultaneously,
it is possible to determine whether a particular genetic variant
affects the downstream expression of a gene in a “genetics
of gene expression” (expression quantitative trait loci; eQTL)
analysis. Furthermore, if a genetic variant resides in a functional
site associated with transcription factor binding, epigenetic
modification, or protein regulation, as revealed by the ENCODE
project, it becomes possible to narrow the basis of potential
targets. Co-analyses of genomic data with expression profiles
from either the transcriptome, proteome or methylome help to
identify the quantitative trait locus and eQTL, proteome QTL, or
methylome QTL. Integrating transcriptome and proteome data
has also led to the discovery of post-translational activities and
correlation between two omics types under identical conditions.
A network-based method, along with omics data integration
approaches, will be discussed in the data integration section.

Omics Integration to Address AD Etiology
and Clinical Variability/Endotypes
Clinical management of AD is often challenging due to
its heterogeneity with multiple endotypes (e.g., intrinsic vs.
extrinsic, with or without other allergic or immune diseases,
mild or moderate vs. severe forms, Staphylococcus-infected vs.
uninfected forms). Therefore, much of current research has been
focused on gaining a better understanding of the endotypes
with omics data. However, these studies are often underpowered.
In an attempt to connect endotypes with transcriptome data,
Martel et al. (152) described that in mild, extrinsic AD (total
IgE >200 kU/L; n = 5), the expression of most skin barrier
genes, including filaggrin and loricrin, remained unchanged (or
moderately upregulated) compared to controls (n = 9), despite
the presence of heterozygous mutations in the filaggrin (FLG)
gene in majority of patients. On the other hand, mild, intrinsic

AD (n = 9) resembled mild psoriasis (n = 9), rather than
AD, when expression profiles of genes involved in inflammatory
responses were compared between these conditions (152).

In AD, the skin is infected with viral and bacterial strains in
at least 30% of patients, while about 90% of active skin lesions
are associated with Staphylococcus infection (153). However,
studies so far have not been performed to directly connect
the skin microbiome with transcriptome or any other omics
layer in AD. Transcriptome studies have linked infection
with down-regulation of innate immune genes (such as genes
coding antimicrobial peptides) in the epidermis (69). Down-
regulation of a wide array of innate immune genes, like LTF,
MSMB, RNASE7, and SCGB2A1, has also been shown from
AD transcriptomic studies, which might be linked to increased
susceptibility to microbial infection in AD (69).

Filaggrin is important for the formation of stratum corneum
layer and also for its hydration of this barrier properties. Subjects
carrying mutations in the FLG gene produce dry, flaky skin and
potentially get sensitized to allergens due to enhanced exposure
(154). To assess the effect FLG loss-of-function mutations on
skin transcriptome, uninvolved skin of pediatric AD patients
(n = 26) has been compared with site-matched samples from
controls (n = 10 non-atopic) (155). Cases and controls were
screened for FLG genotype to stratify the transcriptome data.
Interestingly, FLG wild-type cases showed dysregulation of genes
involved with lipid metabolism, while FLG haplo-insufficiency
affected global gene expression and was characterized by a
type 1 interferon–mediated stress response. This study, along
with clinical stratification based on FLG status, suggested that
subjects with the FLG loss-of-function mutation might represent
a specific endotype characterized by early onset disease with
more severe and generalized manifestation of symptoms (156)
However, there is an insufficient number of genomics studies to
further define AD endotypes.

Omics Integration: Biological Relevance
and Approaches
Genes identified from genomic (GWAS), epigenomic and
proteomic studies can be used to build AD disease- associated
networks from each omics level and a network-level overlap
can be calculated. Previous studies identified centrally located
network genes or “hub genes” from individual omics layers
(69). For a more integrated systems level overview, AD-relevant
candidates (genes/transcripts/proteins) from each omics level
could be combined to build a disease network. Significant AD-
relevant genes can be prioritized from omics databases, or
from experimentally derived multi-omics data available from
existing literature using standard literature interrogation tools
(157). This comprehensive approach (inclusive method) uses
advanced analytics to explore causal relationships between omics
candidates and disease conditions/ pathways giving insights not
achievable from any single-layer omics data.

Figure 2A represents network of 52 AD-relevant candidates
from multi-omics approach (Ingenuity Pathway Analysis,
Qiagen, USA). These candidates contain members from
different functional groups such as keratinocyte development,
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FIGURE 2 | continued
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FIGURE 2 | Biological approaches of omics integration: (A) Network of significant AD-relevant candidates from multi-omics data. These candidates contain members

from different functional groups such as keratinocyte development, cutaneous barrier function, inflammation, fatty acid metabolism, and cytokine function.

(B) Protein-protein interaction networks: functional interaction was visualized using STRING protein network. STRING (http://string-db.org/) is a database of known

and predicted protein interaction, including physical and function association. STRING quantitatively integrates interaction data derived from genomic context,

high-throughput experiments, co-expression and previous knowledge [Szklarczyk et al. (158)]. Connections, based on co-expression and experimental evidence have

been shown. Filled nodes indicate genes; edges between nodes show protein-protein interactions between protein products of the corresponding genes. Different

edge colors represent the types of evidence for the connection. (C) Tissue-based expression heatmap to directly explore the functional relevance of AD-relevant

candidates/genes clustered by genes and by tissue type. The heatmap indicates the relatedness of skin and esophagus in the context of AD-relevant candidates.

cutaneous barrier function, inflammation, fatty acid metabolism
and cytokine function. Their functional interaction can be
visualized by STRING protein network (Figure 2B). STRING
v10.0 (http://string-db.org/) is a database of known and
predicted protein interaction, including physical and function
association (158). Furthermore, these candidates can be used
to develop a tissue-based expression heatmaps to directly
explore their functional relevance in disease-relevant target
tissue(s). Figure 2C represents a tissue-resolved expression
heatmap of 52 AD-relevant candidates using FUMA (a
functional genomic annotation tool) (159). The heatmap,
when clustered by AD genes/ candidates and by target tissues,
shows the relatedness of skin and esophagus in the context
of AD-relevant candidates, which potentially explains the

shared etiology between AD and food allergy. Our findings
suggest that the pathways shared between AD and other
allergic diseases might have significant functions in skin,
esophagus, vagina—areas characterized by shared structural
protein components. Particularly, the functional significance
of structural proteins co-expressed by oral and skin tissues
have been described (160). By applying gene ontology (GO)
enrichment analysis, we found that these candidate genes
are associated with epidermal development, keratinocyte
differentiation, and epithelial cell differentiation pathways were
most differentially enriched in asthmatics. Interestingly, many
of these pathways derived from these candidate genes have also
been related to Th2 pathway, immune cells, and response to
cytokine.
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We further ran an overlapping analysis of candidate genes
identified from multiple omics levels. Figure 3 represents an
omics data integration by multi-omics overlap. The genomic,
epigenomic, transcriptomic and proteomic candidates that are
associated with AD have been obtained from GWAS catalog
and from published epigenomic, transcriptomics, and proteomic
experiments. Individual omics datasets were analyzed, and Venn
diagrams were produced to visualize the overlap between genes
and pathways. The result shows that filaggrin was associated with
AD from four omics (genomic, epigenomic, transcriptomic, and
proteomic) level experiments, followed by SERPINB3 (reported
from most transcriptomic, epigenomic, and proteomic studies).
The number of candidates from each omic level might increase,
as more data will be available from different levels. Interestingly
although we observed a limited gene level overlap between
different omics-level data in AD (candidate included SPINK5,
KLK5, FLG, CRCT1, ARG1, S100A8, and CCL27 reported ≥2
omics level overlap) there was a remarkable overlap at the
pathway level. The pathway-level overlap included macrophage,
endothelial cell and fibroblast activation pathways, Th1/Th2
lymphocytes and NFkB activation pathways.

The potential role of NFkB in the manifestation of
inflammatory responses in AD is well-described (161). In fact,
NFkB -targeted therapies, although not very specific to AD,
have shown promising results in a mouse model of AD (162–
164). The role of Th1/Th2 lymphocytes in AD has been
the subject of many studies, but the significance of other
cells and tissues, particularly macrophage, endothelial cell and
fibroblasts, is relatively unexplored. However, their involvement
in AD is strongly indicated by our multi-omics approach.

Experimental data indicated that fibroblasts from the skin
biopsy samples of patients with atopy modulate the proliferation
and terminal differentiation of keratinocytes obtained from
control subjects; this modulation leads to alteration of the
keratinocytes’ morphologic features, which could be restored
by healthy fibroblasts (165). These effects were linked to low
expression of the differentiation-associated cytokine leukemia
inhibitory factor by fibroblasts from subjects with AD (165).
On the other hand, experimental data also demonstrated that
granulocyte macrophage colony-stimulating factor (GM-CSF)
was overproduced by keratinocytes in AD, which was linked
to sustained dendritic cell activation in AD skin (166). A
significant role of macrophages in the manifestation of AD
has been reviewed by Kasraie et al. (167). Experimental data
further demonstrated an increased macrophage infiltration of
the skin and interactions through surface-bound IgE and by
secreting chemokine mediators. Human macrophages are also
activated through its surface-expressed IL-31RA, particularly
when exposed to staphylococcal enterotoxin in AD (168).
Finally, the central role of epithelium has long been recognized
in the pathogenesis of asthma and AD (169). Skin and
airway epithelium produce TSLP, which directs the cross-
talk of epithelium and dendritic cells to augment allergic
inflammation. It can activate neurons to induce itch in AD
(170). Epithelium-derived TSLP can also directly initiate Th2
type cytokine production by mast cells, providing a T cell–
independent route to pro-allergic responses (169). Interestingly,
since TSLP induction occurs through epithelial Toll-like
receptors, TSLP-mediated allergic manifestations represent an
important link between innate immunity and allergic disease

FIGURE 3 | Multi-omics overlap analysis at gene and pathway level to integrate and identify AD candidate loci (at gene, transcript or protein) level (left panel) or at the

pathway level (right panel). The genomic, epigenomic, transcriptomic and proteomic candidates that are associated with AD have been obtained from GWAS, from

published epigenomic, Transcriptomics, and proteomic data respectively. Venn diagrams show the overlap between candidate gene, transcript or proteins (left panel;

A) or between pathways (right panel; B) derived from each level. Numbers indicate the numbers of shared candidates or pathways. The result shows that only one

candidate i.e., filaggrin (FLG) could be associated with AD from four omics (Genomic, epigenomic, Transcriptomic and proteomic) level experiments, followed by

SERPINB3 (reported from most transcriptomic, epigenomic and proteomic studies; A). Interestingly we noticed that although there is a limited overlap between

candidates obtained from individual omics-level data, while the candidates demonstrated considerable overlap at the canonical pathway levels showing the

significance of macrophage (MØ), endothelial cell (EC) and fibroblast (FB) activation pathways (from GWAS, transcriptome and Epigenome—four omics levels) as

found in rheumatoid arthritis (RA), as well as Th1/Th2 activation and NFkB activation pathways (GWAS, transcriptome and Epigenome) and autophagy, ILK and

Endothelin-1 signaling pathways (transcriptome, proteome, and epigenome) in AD (B).
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(169). In summary, published experimental data strongly support
our multi-omics results, which demonstrate the role of other
cells (i.e., macrophage, endothelial cell, fibroblasts) beyond the
lymphocytes and of barrier function proteins (e.g., filaggrin,
occludin, claudin) in AD.

Our multi-omics approach also suggests the roles of
autophagy, integrin-linked kinase (ILK) signaling and endothelin
1 (ET-1) signaling in AD. Though ILK signaling has not
been well-explored in the context of AD, there are reports
showing that autophagy and ET-1 might play very significant
roles. ILK activation might be a result of S. aureus infection,
which is frequently associated with AD skin (171). The role
of autophagy in regulating keratinocyte inflammation in case
of skin diseases, including AD, has been previously discussed
(172–175). Interestingly, experimental data also suggest that
Staphylococcus strains might persist within keratinocytes by
stimulating autophagy (176). This promotes the degradation
of inflammasome components and facilitates Staphylococcal
survival. Thus, autophagy is relevant in explaining the persistent,
methysilate-resistant Staphylococcal infection in AD (176).
However, the roles of ET-1 in AD have been better explored.
ET-1 functions as a pruritogenic mediator in the manifestation
of AD symptoms (177). Its multifaceted roles in AD have been
investigated by several groups, and its plasma concentration has
been correlated with AD disease severity (178–180).

Biological data from multi-dimensional information levels
are highly inter-connected and when combined, can provide
meaningful insights. Genetic variants are subject to epigenetic
regulation, which helps determine the level of gene expression
producing “intermediate phenotypes” and ultimately alter an
individual’s risk of disease development or disease severity.
For example, a combined epigenetic-transcriptomic analyses
of epidermal samples obtained from AD lesions compared to
healthy epidermis, indicated differences in methylation status,
which partially correlated with differentially regulated transcript
levels of epidermal differentiation and immune response genes
(61, 62). Although there is a limited number of reports in the
literature that use a multi-omics approach to interrogate AD
samples, additional results frommulti-omics studies are expected
in the future due to the increasing availability of cost-effective
omics tools that can generate big data utilizing a minute amount
of a patient sample. However, this requires collecting samples for
each subject for multiple omics applications. Ongoing research
is directed toward utilizing minimally invasive methods, such
as tape striping, which could help obtain samples (microbiome,
DNA, RNA) from the same affected site for multi-omics
experiments.

APPROACHES TO INTEGRATE
OMICS-WIDE DATA

Omics resources and omics integration tools exist (represented in
Table 3). The rationale to develop systems biology technologies
that integrate multiple omics data types for molecular taxonomy
of complex diseases has been emphasized by several authors
(9). However, this approach has not been used in AD so

TABLE 3 | Publicly available omics resources relevant to AD.

Omics type Database name Web link

Genomics HapMap http://hapmap.ncbi.nlm.nih.gov/

1000 Genomes

Project

http://www.1000genomes.org

GWAS Catalog www.genome.gov/gwastudies

Epigenomics HEA http://www.genboree.org/

NCBI Epigenomics http://202.97.205.78/diseasemeth/

index.html

Transcriptomics Gene Expression

Omnibus

https://www.ncbi.nlm.nih.gov/gds/

ArrayExpress https://www.ebi.ac.uk/arrayexpress/

Proteomics Plasma Proteome

Database

http://www.

plasmaproteomedatabase.org/

PRIDE (proteome

identification)

https://www.ebi.ac.uk/pride/archive/

Expasy https://www.expasy.org/

Metabolomics HMDB http://www.hmdb.ca/

BiGG http://bigg.ucsd.edu/

Lipidomics LMSD http://www.lipidmaps.org/data/

structure/

Lipidblast http://fiehnlab.ucdavis.edu/projects/

lipidblast

Microbiome Human

Microbiome

Project

https://hmpdacc.org/hmp/

Exposome Exposome-

Explorer

http://exposome-explorer.iarc.fr

Integrative omics IMPALA http://impala.molgen.mpg.de/

iPEAP http://www.tongji.edu.cn/?qiliu/ipeap.

html

MetaboAnalyst http://www.metaboanalyst.ca/

SAMNetWeb http://fraenkel-nsf.csbi.mit.edu/

samnetweb/

pwOmics https://bioconductor.org/packages/

release/bioc/html/pwOmics.html

WGCNA https://horvath.genetics.ucla.edu

Biological databases containing omics data and their web-links have been shown.

Representative omics integration tools based on biochemical pathways and ontology,

network-based and empirical correlation–based methods have been mentioned.

HEA, Human Epigenome Atlas; PRIDE, Proteomics data Repository; HMBD, Human

Metabolome Database; BiGG, UCSD Big data modeling resources; LMSD, LIPID MAPS

Structure Database; IMPALA, Integrated Molecular Pathway Level Analysis; iPEAPS,

integrating multiple omics and genetic data for pathway enrichment analysis; pWOmics,

pathway-based level-specific data comparison of matching omics data sets; WGCNA,

Weighted correlation network analysis, also known as weighted gene co-expression

network analysis. Weblinks to respective resources have been provided.

far. Computational biology tools have emerged in the recent
years for integrating high-throughput data using multistage
and meta-dimensional approaches to meet the demands for
within and between omic-level integrations. An integrative
approach to interpret multi-omics data can significantly alleviate
the bottlenecks by providing valuable insights may not be
achievable by any single-layer omic approach. Gene network
and pathway modeling approaches to integrate resources from
different omics domains are being developed to address this
knowledge gap (9, 181–187). Network analysis investigates the
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functional and physical interaction among genes (188). A widely
used approach to translate diverse analytic data into biological
understanding is by projecting and visualizing the data onto
curated biological pathways (e.g., KEGG). Bioinformatics and
visualization tools allow the investigators to identify co-regulated
genes, metabolites, and proteins in an intuitive and easy-to-use
manner. For example, pathway-based analysis tools that integrate
GWAS with curated pathways and accept eQTL information
have been developed (189, 190). In addition to knowledge-
based pathway analysis, data-driven approaches that utilize gene
regulation and protein-protein interaction networks could be
applied to identify the most likely pathologic perturbations and
target genes for disease-associated loci.

Three data integration techniques are widely used: (a)
biochemical pathway- and ontology-based, (b) network-
based and (c) empirical correlation-based methods (191). (a)
Biochemical pathway- and ontology-based methods are based
on enrichment analysis in individual omics levels and thus
are highly sensitive to the expert definitions of the constituent
pathway members. In the most complex disease types, candidate
genes and proteins can be integrated at the pathway level
rather than at the candidate gene and protein levels. (b)
Network-based approaches utilize biological networks involving
individual genes, proteins and metabolites that can be used
to generate an integrated map of multiple omics-level with
results independent of any predefined biochemical pathways. (c)
Empirical correlation-based approaches are useful for biological
and other meta-data (e.g., clinical outcomes) integration,
particularly in the absence of other domain knowledge.

A large number of publicly available tools have been developed
for omics data integration based on the above-mentioned
approaches (191). Integrated molecular pathway level analysis
(IMPALA) is a widely used online tool that accepts gene
or protein expression and metabolomics data as inputs and
identifies novel pathways from the combined datasets on the
basis of over-representation and enrichment analysis from a
large number of pre-annotated pathways linked to multiple
databases (192, 193). A similar approach has been used by other
programs such as iPEAP and MetaboAnalyst (194, 195). iPEAP
accepts transcriptomics, proteomics, metabolomics, and GWAS
data, whereas MetaboAnalyst accepts data from either targeted
profiling (concentration tables) or metabolic fingerprinting
approaches (spectral bins, peak lists) from NMR, LC-MS, or
GC-MS and performs a huge number of statistical analyses for
pathway and biomarker analyses that can be correlated with
other omics layers (195, 196). Additional tools are continuously
developed to integrate metabolomic data with genomic and
pathway data (e.g., RaMP) and transcriptomic data (197, 198).
Network-based program suites are available for either online
use or installing locally as “R” packages/cytoscape plug-ins
(199–201). For example, SAMNetWeb is a web tool capable
of accepting two distinct data types (e.g., transcriptome and
proteome data) across multiple experiments to identify and
visualize activated pathways (199). On the other hand, programs
such as pwOmics and metamapper are available as “R” packages
(191, 202).

Several empirical correlation-based methods are developed to
integrate multi-omics data. For example, weighted correlation
network analysis (WGCNA) is an “R” package that can be used
for finding clusters of highly correlated genes (gene clusters)
(203). It can also be used to connect gene clusters to additional
information, such as single-nucleotide polymorphisms (SNPs)
and proteomic and clinical data, and thus can be used to
identify candidate biomarkers or therapeutic targets (191,
203). These methods have been widely applied in various
biological/ biomedical contexts (e.g., cancer, mouse genetics,
yeast genetics, brain imaging data) (191). Several powerful
omics integration packages have been developed for additional
data integration including physiological conditions, biochemical
reactions, molecular and mass-spectral similarity. Interestingly,
the Grinn package provides a dynamic interface to rapidly
integrate gene, protein and metabolite data using both biological
(network–based) and empirical (correlation–based) approaches
(http://kwanjeeraw.github.io/grinn/).

In addition to omics data, there are novel health data resources
that are expected to revolutionize personalized medicine. For
example, big data analytics in personalized and predictive
medicine of complex diseases, including allergic disorders,
has been previously emphasized by several authors (204–206).
Leveraging big data (using emerging, data-science tools such
as deep-learning) can be very efficient in obtaining insight
into complex disease outcomes and suggesting the best use
of healthcare resources. Beyond traditional data sources (e.g.,
electronic health record), novel tools capable of recording
personal health profiles captured by individuals themselves are
going to contribute a high volume of data to the systems biology
of complex diseases. Though traditional omics data represent
snapshots from individuals at research and clinic visits, big data
can capture intrinsic, and extrinsic variables in real time through
recording using novel technologies such as wearable devices and
mobile health apps (205). Patients and control subjects can record
parameters related to skin care, food, exercise, adherence to
medication, and others. In addition, modern sensor technologies
allow recording of several parameters, such as physical activity,
blood pressure, glucose level and heart rate, but can be extended
to include measures of TEWL, lung function, symptom scores,
humidity and environmental exposures (205, 207).

APPROACHES TO CONNECT OMICS TO
ENDOTYPES

Steps involved in a successful identification of disease subtypes
and integration of multi-omics data and associated clinical
outcomes measures have been described by Roger et al. (9).
In such studies, patients were clustered using different omics-
level data (exome sequences, transcriptome, and proteome
data), and the results were integrated with clinical data to
effectively characterize complex disease subtypes. The challenges
with this “molecular-data-first” approach, however, need to be
carefully addressed. In the case of AD, this model is largely
impeded by limited or lack of information at multiple omics
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levels of particular clinical phenotypes included in the studies
conducted thus far. We created a schema for omics integration
in AD (Figure 4). Omics datasets can be obtained from publicly
accessible databases that are continuously updated with curated
data primarily derived from omics-level experiments. SNP set
association scores for each gene can be computed on the basis
of the SNPs assigned to the respective gene. Differential gene
expression, DNA methylation and metabolite (including fatty
acids for lipidome) scores can be computed for each gene from
gene expression, DNA methylation and metabolite profiles. The
gene association scores integrate evidences from expression,
methylation, metabolite signature, and the genotype signature
for each gene. Finally, the pathway/ network association test can
identify gene sets associated with samples of a single endotype
by integrating evidence across genes in the gene sets. This can
identify molecular subtypes, which after associating with clinical
phenotypes, can be used to designate endotypes. Endotype-
specific genes and pathways can be useful for rational designing
of treatment strategies.

OMICS-WIDE INTEGRATION: RECENT
ADVANCES AND REMAINING
CHALLENGES

The pathogenesis of AD has been attributed to adaptive immune
abnormalities, with dysregulated Th1/Th2/Th22 response, IgE
production, chemokine signaling, and dendritic cell recruitment,
resulting in the itch and inflammatory dermatosis (208). It is
increasingly evident that inflammation in AD results initially
from inherited and acquired insults that converge to drive
structural and functional alterations, followed by immune system
activation and compromised skin-barrier homeostasis. This cycle
has been designated as the “outside-inside-outside” model of
AD (208). Th2 cytokines can down-regulate epidermal barrier
protein, which can enhance antigen/allergen exposure and
thereby increase inflammation. In spite of evolving models
to explain etiology being proposed, the management of AD
is primarily aimed at controlling inflammation and itch. The
underlying mechanism of early emollient use in preventing AD
is still not completely understood (209). In addition to Th2
activation, AD is probably much more heterogeneous, with
additional activation of Th1, Th22, and Th17/IL-23 cytokine
pathways depending on AD subtype and endotype (210). FLG
mutation represents an early onset AD subtype with more
severity. Among two other relatively clear phenotypes, intrinsic
AD (normal IgE level) shows significantly elevated expression
of IL-17, IL-23, IL-22 cytokines associated with S100As,
elafin/PI3, CCL20 expression by keratinocytes (thus resembling
psoriasis), whereas extrinsic AD (high IgE level) shows similar
expression levels of Th2 cytokines (29). Although cytokine-
targeted dupilimab therapy shows efficacy in both intrinsic and
extrinsic AD, the exact mechanism is not completely clear in
the case of intrinsic AD. Contrasting clinical, immunologic and
histochemical features of AD and psoriasis have been elaborated
elsewhere (211). Both lesional and non-lesional AD can be
associated with epidermal barrier defects (as demonstrated by

higher TEWL), with or without specific IgE. In molecular terms,
psoriasis has been considered as a TH17/IL23–skewed disease,
whereas AD has been considered a TH2-centered disease, both
sharing TH22 components. However, Martel et al. demonstrated
that the transcriptomic signature of intrinsic AD is more similar
to psoriasis than to extrinsic AD (152). However, the TH17
and TH22 pathways along with expression of S100A and innate
immune genes by keratinocytes are less activated in patients with
AD compared to psoriasis (212). In addition to intrinsic AD,
results involving Asian AD subjects (mostly extrinsic), showed
an induction of the TH17 and TH22 axes (28). Taken together,
these studies demonstrate there are molecular subtypes of AD
that demonstrate features common with psoriasis, but does not
conclusively indicate that they are the subtypes of psoriasis.
Nevertheless, molecular subtyping of AD is very important in
personalized treatment and results from ongoing clinical trials
targeting TH1, TH2, TH17, and TH22 pathways will continue
to dissect the patho-mechanisms associated to this complex
condition.

The methods to analyze patient omics data into molecular
subtypes can be adapted to fit the type and volume of data,
leading to characterization of unique and shared pathways
for molecular subtyping. Next, standard statistical models
can be implemented for connecting molecular subtypes with
clinical phenotypes. This approach previously led to successful
identification of complex disease endotypes, understanding
prognosis and appropriately targeting treatments (9). However,
it has also been mentioned that since new patients may often
have limited data compared to the patient group used to
generate themolecular subtypes, endotyping needs to be based on
simpler, easily obtainable data and preferably connected to stable
biomarkers. Finally, a significant challenge for connecting multi-
omics to complex disease endotypes is the availability of high
quality phenotypic data. In case of AD, not all clinically relevant
parameters (such as TEWL), are available for omics datasets.
It is therefore important to collect as much phenotypic data as
possible to correlate with different omics layers.

OMICS-WIDE INTEGRATION: ANALYTICAL
CHALLENGES AND OPPORTUNITIES

Big data has been defined as “large volumes of high velocity,
complex, and variable data that require advanced techniques
and technologies to enable the capture, storage, distribution,
management and analysis of the information” (204, 213). Big data
has led to new data warehouses and technologies including cloud-
based computing with user-friendly input and output interfaces.
Big data from real-time physiologic and environmental data
connected to patients omics data can uncover novel pathways
and processes related to complex disease etiology in the future
(204). However, there are several challenges to integrate “big
omics data.” Some of these challenges include problems with
the data being scattered in several annotation databases and
thereby a lack of a unified portal for data annotation and
analytics. In addition, integrating all types of omics data (such the
datasets generated from genomic, epigenomic, transcriptomic,
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FIGURE 4 | A schema for omics data integration to generate molecular subtypes for personalized medicine. With recent high throughput technologies, a wide range

of omics level data has been generated. Omics datasets can be stored in publicly accessible databases that are continuously fed with curated data derived from

omics-level experiments and scored to integrate using appropriate statistical tools. Next, the samples can be resolved into groups using integrated scores to identify

molecular subtypes, which after associating with clinical phenotypes, can be used to designate endotypes. Endotype-specific genes/pathways can be useful for

rational designing of treatment strategies.

proteomic, interactomic, metabolomic studies) are difficult due
to non-linearity of the data. Seamless downstream analysis
and prediction of actionable insight require multiple, disparate
tools and manual interventions. In addition, emerging clinical
data sources are typically less structured, since they were
designed to serve a different purpose (e.g., clinical care and
billing). Current integrative analyses are primarily focused on the
combination of omics data from the same source material, such
as tumor, human brain or blood samples representing one level of
regulation. However, the integration of data from different levels
of regulation (i.e., blood and tumor) or different patient samples
may also reveal important knowledge about the hierarchy of the
human genetic architecture.

High throughput technologies are becoming increasingly
efficient and affordable. Moreover, efficient use of publicly
available datasets and novel bioinformatic-based tools it can be
possible to identify interactive networks of genes, transcripts,
proteins and metabolites providing a framework for data

integration useful to detect, rank and predict functional variants
linked with AD. The rationale is that by integrating different
omics data, we can learn more about genotype-phenotype
relationships than would not be possible otherwise. Our
ability to measure millions of data points for every single
omics experiment makes hypothesis generation dependent on
advanced computational approaches. Machine learning (ML)
techniques are among the most widely used approaches to
address this problem (214). ML represents computer algorithms
that can learn from existing data and use that knowledge
to make predictions from new data such as distinguishing
between disease states on the basis of gene expression or
methylation profiles of samples. ML algorithms can improve the
accuracy of prediction over conventional regression models by
capturing complex, non-linear relationships in multi-omics and
clinical data. The algorithms used in ML include data mining
and cluster approaches of supervised or unsupervised nature
(215).
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CONCLUSION AND FUTURE DIRECTION

The power of the multi-omics approach in personalized and
predictive medicine for complex diseases has recently been
emphasized by several authors (205, 216). Despite increased
research efforts in recent years, most omics-level data concerns
only genomics and transcriptomics in AD. There are some
novel proteomic (in serum) and lipidomic (in sweat samples)
studies showing great promise toward identifying AD endotypes.
Using multi-omics analysis, we showed that previously suspected
genes, such as FLG and SERPINB3, were associated with AD
among multiple omics types. At the pathway level, macrophage,
endothelial cell/ ET-1, Th1/Th2, NFκB, and fibroblast activation
pathways were overrepresented in AD from multiple omics
level results. Thus, integrated multi-omics data provide new
biological insights, as well as confirm previously reported AD-
associated genes and pathways. The relative importance of one
or more pathways in individual patients might be helpful in
establishing endotypes. It should be noted that not all biomarkers
for identifying endotypes can be visible by interrogating one
single omics layer; thus, more studies are required to unravel
multi-layered omics data in AD. Because most of the advanced
data integration tools mentioned above are to be used to
analyze multidimensional omics data obtained from the same
set of samples, future studies should be directed to consistently
obtaining multilevel (e.g., genomic, transcriptomic, proteomic)

data from AD samples to obtain an integrated omics level picture
of the disease and its endotypes. Despite the growing availability
of genome-wide data in multiple omics types, so far, publicly
available omics databases contain limited data related to AD.
To address this limitation, data obtained from all omics-level
experiments (e.g., epigenome, lipidome exposome, microbiome)
should be deposited in appropriate public data repositories.
Improved computational tools are needed to handle big data
generated by high-throughput technology along with a patient’s
personalized exposure profile to achieve the promise of precision
medicine in AD.
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