624 research outputs found
TCTP in Development and Cancer
The translationally controlled tumor protein (TCTP) is highly conserved among animal species. It is widely expressed in many different tissues. It is involved in regulating many fundamental processes, such as cell proliferation and growth, apoptosis, pluripotency, and the cell cycle. Hence, it is not surprising that it is essential for normal development and, if misregulated, can lead to cancer. Provided herein is an overview of the diverse functions of TCTP, with a focus on development. Furthermore, we discuss possible ways by which TCTP misregulation or mutation could result in cancer
Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes.
BACKGROUND: When the nuclei of mammalian somatic cells are transplanted to amphibian oocytes in the first meiotic prophase, they are rapidly induced to begin transcribing several pluripotency genes, including Sox2 and Oct4. The more differentiated the donor cells of the nuclei, the longer it takes for the pluripotency genes to be activated after the nuclear transfer to oocytes. We have used this effect in order to investigate the role of histone modifications in this example of nuclear reprogramming. RESULTS: Reverse transcription polymerase chain reaction analysis shows that the transcriptional reprogramming of pluripotency genes, such as Sox2 and Oct4, takes place in transplanted nuclei from C3H10T1/2 cells and from newly differentiated mouse embryonic stem cells. We find that the reprogramming of 10T1/2 nuclei is accompanied by an increased phosphorylation, an increased methylation and a rapidly reduced acetylation of several amino acids in H3 and other histones. These results are obtained by the immunofluorescent staining of transplanted nuclei and by Western blot analysis. We have also used chromatin immunoprecipitation analysis to define histone modifications associated with the regulatory or coding regions of pluripotency genes in transplanted nuclei. Histone phosphorylation is increased and histone acetylation is decreased in several regulatory and gene coding regions. An increase of histone H3 lysine 4 dimethylation (H3K4 me2) is seen in the regulatory regions and gene coding region of pluripotency genes in reprogrammed nuclei. Furthermore, histone H3 lysine 4 trimethylation (H3K4 me3) is observed more strongly in the regulatory regions of pluripotency genes in transplanted nuclei that are rapidly reprogrammed than in nuclei that are reprogrammed slowly and are not seen in beta-globin, a gene that is not reprogrammed. When 10T1/2 nuclei are incubated in Xenopus oocyte extracts, histone H3 serine 10 (H3S10) is strongly phosphorylated within a few hours. Immunodepletion of Aurora B prevents this phosphorylation. CONCLUSION: We conclude that H3K4 me2 and me3 are likely to be important for the efficient reprogramming of pluripotency genes in somatic nuclei by amphibian oocytes and that Aurora B kinase is required for H3S10 phosphorylation which is induced in transplanted somatic cell nuclei.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
The evolving biology of cell reprogramming
Modern stem cell biology has achieved a transformation that was thought by many to be every bit as unattainable as the ancient alchemists' dream of transforming base metals into gold. Exciting opportunities arise from the process known as ‘cellular reprogramming’ in which cells can be reliably changed from one tissue type to another. This is enabling novel approaches to more deeply investigate the fundamental basis of cell identity. In addition, new opportunities have also been created to study (perhaps even to treat) human genetic and degenerative diseases. Specific cell types that are affected in inherited disease can now be generated from easily accessible cells from the patient and compared with equivalent cells from healthy donors. The differences in cellular phenotype between the two may then be identified, and assays developed to establish therapies that prevent the development or progression of disease symptoms. Cellular reprogramming also has the potential to create new cells to replace those whose death or dysfunction causes disease symptoms. For patients suffering from inherited cases of degenerative diseases like Parkinson's disease or amyotrophic lateral sclerosis (also known as motor neuron disease), the future realization of such cell-based therapies would truly be worth its weight in gold. However, before this enormous potential can become a reality, several significant biological and technical challenges must be overcome. Furthermore, to maintain the credibility of the scientific community with the general public, it is important that hope-inspiring advances are not over-hyped. The papers in this issue of the Philosophical Transactions of the Royal Society B: Biological Sciences cover many areas relevant to this topic. In this Introduction, we provide an overall context in which to consider these individual papers
Recommended from our members
TCTP in development and cancer.
The translationally controlled tumor protein (TCTP) is highly conserved among animal species. It is widely expressed in many different tissues. It is involved in regulating many fundamental processes, such as cell proliferation and growth, apoptosis, pluripotency, and the cell cycle. Hence, it is not surprising that it is essential for normal development and, if misregulated, can lead to cancer. Provided herein is an overview of the diverse functions of TCTP, with a focus on development. Furthermore, we discuss possible ways by which TCTP misregulation or mutation could result in cancer.Peer Reviewe
An indelible lineage marker for Xenopus using a mutated green fluorescent protein
We describe the use of a DNA construct (named GFP.RN3) encoding green fluorescent protein as a lineage marker for Xenopus embryos. This offers the following advantages over other lineage markers so far used in Xenopus. When injected as synthetic mRNA, its protein emits intense fluorescence in living embryos. It is non-toxic, and the fluorescence does not bleach when viewed under 480 nm light. It is surprisingly stable, being strongly visible up to the feeding tadpole stage (5 days), and in some tissues for several weeks after mRNA injection. We also describe a construct that encodes a blue fluorescent protein. We exemplify the use of this GFP.RN3 construct for marking the lineage of individual blastomeres at the 32- to 64-cell stage, and as a marker for single transplanted blastula cells. Both procedures have revealed that the descendants of one embryonic cell can contribute single muscle cells to nearly all segmental myotomes rather than predominantly to any one myotome. An independent aim of our work has been to follow the fate of cells in which an early regulatory gene has been temporarily overexpressed. For this purpose, we co-injected GFP.RN3 mRNA and mRNA for the early Xenopus gene Eomes, and found that a high concentration of Eomes results in ectopic muscle gene activation in only the injected cells. This marker may therefore be of general value in providing long term identification of those cells in which an early gene with ephemeral expression has been overexpressed
Dynamic Interpretation of Hedgehog Signaling in the Drosophila Wing Disc
Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh) forms an extracellular gradient that organizes patterning along the anterior–posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial “overshoot” of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc). In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression
Complex and unexpected dynamics in simple genetic regulatory networks
Peer reviewedPublisher PD
Deficient Induction Response in a Xenopus Nucleocytoplasmic Hybrid
Defects in induction signaling and response underlie the nucleocytoplasmic incompatibility between two evolutionarily distant frog species, while specific treatments partially restore this response in explants and whole embryos
Oocyte expression with injection of purified T7 RNA polymerase.
International audienceThe Xenopus oocyte is a widely used system for protein expression. Investigators have had the choice between two different techniques: injection into the cytoplasm of in vitro transcribed complementary RNA (cRNA) or injection into the nucleus of complementary DNA (cDNA). We report on a third expression technique that is based on the combined injection of cDNA and purified T7 RNA polymerase directly into the cytoplasm of oocytes
- …