146,632 research outputs found

    VIEWPOINT: Hinduism and the Academy: Towards a Dialogue Between Scholar and Practitioner

    Get PDF
    Gupta articlulates a rationale as to why the position of both the academician and the practitioner are necessary for meaningful religious dialog

    Fe and N self-diffusion in non-magnetic Fe:N

    Full text link
    Fe and N self-diffusion in non-magnetic FeN has been studied using neutron reflectivity. The isotope labelled multilayers, FeN/57Fe:N and Fe:N/Fe:15N were prepared using magnetron sputtering. It was remarkable to observe that N diffusion was slower compared to Fe while the atomic size of Fe is larger compared to N. An attempt has been made to understand the diffusion of Fe and N in non-magnetic Fe:N

    Deformation and break-up of viscoelastic droplets in confined shear flow

    Full text link
    The deformation and break-up of Newtonian/viscoelastic droplets are studied in confined shear flow. Our numerical approach is based on a combination of Lattice-Boltzmann models (LBM) and finite difference schemes, the former used to model two immiscible fluids with variable viscous ratio, and the latter used to model the polymer dynamics. The kinetics of the polymers is introduced using constitutive equations for viscoelastic fluids with finitely extensible non-linear elastic dumbbells with Peterlin's closure (FENE-P). We quantify the droplet response by changing the polymer relaxation time τP\tau_P, the maximum extensibility LL of the polymers, and the degree of confinement, i.e. the ratio of the droplet diameter to gap spacing. In unconfined shear flow, the effects of droplet viscoelasticity on the critical Capillary number \mbox{Ca}_{\mbox{\tiny{cr}}} for break-up are moderate in all cases studied. However, in confined conditions a different behaviour is observed: the critical Capillary number of a viscoelastic droplet increases or decreases, depending on the maximum elongation of the polymers, the latter affecting the extensional viscosity of the polymeric solution. Force balance is monitored in the numerical simulations to validate the physical picture.Comment: 34 Pages, 13 Figures. This Work applies the Numerical Methodology described in arXiv:1406.2686 to the Problem of Droplet Break-up in confined microchannel

    Linear Phase Second Order Recursive Digital Integrators and Differentiators

    Get PDF
    In this paper, design of linear phase second order recursive digital integrators and differentiators is discussed. New second order integrators have been designed by using Genetic Algorithm (GA) optimization method. Thereafter, by modifying the transfer function of these integrators appropriately, new digital differentiators have been obtained. The proposed digital integrators and differentiators accurately approximate the ideal ones and have linear phase response over almost entire Nyquist frequency range. The proposed operators also outperform the existing operators in terms of both magnitude and phase response

    Bayesian recursive parameter estimation for hydrologic models

    Get PDF
    The uncertainty in a given hydrologic prediction is the compound effect of the parameter, data, and structural uncertainties associated with the underlying model. In general, therefore, the confidence in a hydrologic prediction can be improved by reducing the uncertainty associated with the parameter estimates. However, the classical approach to doing this via model calibration typically requires that considerable amounts of data be collected and assimilated before the model can be used. This limitation becomes immediately apparent when hydrologic predictions must be generated for a previously ungauged watershed that has only recently been instrumented. This paper presents the framework for a Bayesian recursive estimation approach to hydrologic prediction that can be used for simultaneous parameter estimation and prediction in an operational setting. The prediction is described in terms of the probabilities associated with different output values. The uncertainty associated with the parameter estimates is updated (reduced) recursively, resulting in smaller prediction uncertainties as measurement data are successively assimilated. The effectiveness and efficiency of the method are illustrated in the context of two models: a simple unit hydrograph model and the more complex Sacramento soil moisture accounting model, using data from the Leaf River basin in Mississippi
    corecore