1,081 research outputs found
Effect of Hetrovalent substitution at Mn site on the Magnetic and Transport Properties of LaSrMnO
Magnetic and transport properties of Ti substituted
LaSrMnO are drastically affected with a change in
preparation conditions. Low temperature infra-red absorption measurements
reveal that this is perhaps due to inhomogeniety in substitution of Ti
on Mn sites. It is found that, in the high temperature annealed samples, the
substitution of Ti supresses the double exchange interaction due to the
formation of Mn-O-Ti chains. While in the low temperature
annealed case substitution of Ti causes formation of isolated ferromagnetic
clusters linked to each other by a variable range hopping polaron.Comment: 11 pages, 8 figures, accepted in J. Magn. Magn. Magn. Mate
Spin-based quantum information processing with semiconductor quantum dots and cavity QED
A quantum information processing scheme is proposed with semiconductor
quantum dots located in a high-Q single mode QED cavity. The spin degrees of
freedom of one excess conduction electron of the quantum dots are employed as
qubits. Excitonic states, which can be produced ultrafastly with optical
operation, are used as auxiliary states in the realization of quantum gates. We
show how properly tailored ultrafast laser pulses and Pauli-blocking effects,
can be used to achieve a universal encoded quantum computing.Comment: RevTex, 2 figure
Universally Coupled Massive Gravity, II: Densitized Tetrad and Cotetrad Theories
Einstein's equations in a tetrad formulation are derived from a linear theory
in flat spacetime with an asymmetric potential using free field gauge
invariance, local Lorentz invariance and universal coupling. The gravitational
potential can be either covariant or contravariant and of almost any density
weight. These results are adapted to produce universally coupled massive
variants of Einstein's equations, yielding two one-parameter families of
distinct theories with spin 2 and spin 0. The theories derived, upon fixing the
local Lorentz gauge freedom, are seen to be a subset of those found by
Ogievetsky and Polubarinov some time ago using a spin limitation principle. In
view of the stability question for massive gravities, the proven non-necessity
of positive energy for stability in applied mathematics in some contexts is
recalled. Massive tetrad gravities permit the mass of the spin 0 to be heavier
than that of the spin 2, as well as lighter than or equal to it, and so provide
phenomenological flexibility that might be of astrophysical or cosmological
use.Comment: 2 figures. Forthcoming in General Relativity and Gravitatio
A dynamical classification of the range of pair interactions
We formalize a classification of pair interactions based on the convergence
properties of the {\it forces} acting on particles as a function of system
size. We do so by considering the behavior of the probability distribution
function (PDF) P(F) of the force field F in a particle distribution in the
limit that the size of the system is taken to infinity at constant particle
density, i.e., in the "usual" thermodynamic limit. For a pair interaction
potential V(r) with V(r) \rightarrow \infty) \sim 1/r^a defining a {\it
bounded} pair force, we show that P(F) converges continuously to a well-defined
and rapidly decreasing PDF if and only if the {\it pair force} is absolutely
integrable, i.e., for a > d-1, where d is the spatial dimension. We refer to
this case as {\it dynamically short-range}, because the dominant contribution
to the force on a typical particle in this limit arises from particles in a
finite neighborhood around it. For the {\it dynamically long-range} case, i.e.,
a \leq d-1, on the other hand, the dominant contribution to the force comes
from the mean field due to the bulk, which becomes undefined in this limit. We
discuss also how, for a \leq d-1 (and notably, for the case of gravity, a=d-2)
P(F) may, in some cases, be defined in a weaker sense. This involves a
regularization of the force summation which is generalization of the procedure
employed to define gravitational forces in an infinite static homogeneous
universe. We explain that the relevant classification in this context is,
however, that which divides pair forces with a > d-2 (or a < d-2), for which
the PDF of the {\it difference in forces} is defined (or not defined) in the
infinite system limit, without any regularization. In the former case dynamics
can, as for the (marginal) case of gravity, be defined consistently in an
infinite uniform system.Comment: 12 pages, 1 figure; significantly shortened and focussed, additional
references, version to appear in J. Stat. Phy
Processing of ultrafine-size particulate metal matrix composites by advanced shear technology
Copyright @ 2009 ASM International. This paper was published in Metallurgical & Materials Transactions A 40A(3) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Lack of efficient mixing technology to achieve a uniform distribution of fine-size reinforcement within the matrix and the high cost of producing components have hindered the widespread adaptation of particulate metal matrix composites (PMMCs) for engineering applications. A new rheo-processing method, the melt-conditioning high-pressure die-cast (MC-HPDC) process, has been developed for manufacturing near-net-shape components of high integrity. The MC-HPDC process adapts the well-established high shear dispersive mixing action of a twin-screw mechanism to the task of overcoming the cohesive force of the agglomerates under a high shear rate and high intensity of turbulence. This is followed by direct shaping of the slurry into near-net-shape components using an existing cold-chamber die-casting process. The results indicate that the MC-HPDC samples have a uniform distribution of ultrafine-sized SiC particles throughout the entire sample in the as-cast condition. Compared to those produced by conventional high-pressure die casting (HPDC), MC-HPDC samples have a much improved tensile strength and ductility.EP-SR
Dynamical model and nonextensive statistical mechanics of a market index on large time windows
The shape and tails of partial distribution functions (PDF) for a financial
signal, i.e. the S&P500 and the turbulent nature of the markets are linked
through a model encompassing Tsallis nonextensive statistics and leading to
evolution equations of the Langevin and Fokker-Planck type. A model originally
proposed to describe the intermittent behavior of turbulent flows describes the
behavior of normalized log-returns for such a financial market index, for small
and large time windows, both for small and large log-returns. These turbulent
market volatility (of normalized log-returns) distributions can be sufficiently
well fitted with a -distribution. The transition between the small time
scale model of nonextensive, intermittent process and the large scale Gaussian
extensive homogeneous fluctuation picture is found to be at a 200 day
time lag. The intermittency exponent () in the framework of the
Kolmogorov log-normal model is found to be related to the scaling exponent of
the PDF moments, -thereby giving weight to the model. The large value of
points to a large number of cascades in the turbulent process. The
first Kramers-Moyal coefficient in the Fokker-Planck equation is almost equal
to zero, indicating ''no restoring force''. A comparison is made between
normalized log-returns and mere price increments.Comment: 40 pages, 14 figures; accepted for publication in Phys Rev
A Comparison of Solar Cycle Variations in the Equatorial Rotation Rates of the Sun's Subsurface, Surface, Corona, and Sunspot Groups
Using the Solar Optical Observing Network (SOON) sunspot-group data for the
period 1985-2010, the variations in the annual mean equatorial-rotation rates
of the sunspot groups are determined and compared with the known variations in
the solar equatorial-rotation rates determined from the following data: i) the
plasma rotation rates at 0.94Rsun, 0.95Rsun,...,1.0Rsun measured by Global
Oscillation Network Group (GONG) during the period 1995-2010, ii) the data on
the soft X-ray corona determined from Yohkoh/SXT full disk images for the years
1992-2001, iii) the data on small bright coronal structures (SBCS) which were
traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the
period 1998-2006, and iv) the Mount Wilson Doppler-velocity measurements during
the period 1986-2007. A large portion (up to approximate 30 deg latitude) of
the mean differential-rotation profile of the sunspot groups lies between those
of the internal differential-rotation rates at 0.94Rsun and 0.98Rsun.The
variation in the yearly mean equatorial-rotation rate of the sunspot groups
seems to be lagging that of the equatorial-rotation rate determined from the
GONG measurements by one to two years.The amplitude of the latter is very
small.The solar-cycle variation in the equatorial-rotation rate of the solar
corona closely matches that determined from the sunspot-group data.The
variation in the equatorial-rotation rate determined from the Mount Wilson
Doppler-velocity data closely resembles the corresponding variation in the
equatorial-rotation rate determined from the sunspot-group data that included
the values of the abnormal angular motions (> 3 deg per day) of the sunspot
groups. Implications of these results are pointed out.Comment: 22 pages, 10 figures, accepted by Solar Physic
Catalytic Hydrolysis of Ethyl Acetate using Cation Exchange Resin (Amberlyst - 15) : A Kinetic Study
Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium
Background: Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk. Methods and Results: We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] ≥ 1%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF≤ 1% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026). Conclusion: Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings
- …
