48,156 research outputs found

    Si-induced superconductivity and structural transformations in DyRh4B4

    Full text link
    DyRh4B4 has been known to crystallize in the primitive tetragonal (pt)-structure and to exhibit a ferromagnetic transition at 12 K, the highest magnetic transition temperature in the entire series of the RRh4B4 materials [1]. We show here that our silicon-added samples of the nominal composition DyRh4B4Si0.2 exhibit superconductivity below Tc ~ 4.5 K and an antiferromagnetic transition below TN ~ 2.7 K. The 12 K transition observed in the pt-DyRh4B4 is completely suppressed. Our annealed samples mainly consist of domains of the chemical composition DyRh3.9B4.2Si0.08. These domains contain two crystallographic phases belonging to the body-centred tetragonal (bct)-structure and the orthorhombic (o)-structure. We have reasons to suggest that superconductivity and antiferromagnetic ordering arise from bct- DyRh4B4 phase and, therefore, coexist below TN ~ 2.7 K.Comment: 11 pages, 6 figures, Accepted for publication in Journal of Alloys and Compound

    Activation of additional energy dissipation processes in the magnetization dynamics of epitaxial chromium dioxide films

    Full text link
    The precessional magnetization dynamics of a chromium dioxide(100)(100) film is examined in an all-optical pump-probe setup. The frequency dependence on the external field is used to extract the uniaxial in-plane anisotropy constant. The damping shows a strong dependence on the frequency, but also on the laser pump fluency, which is revealed as an important experiment parameter in this work: above a certain threshold further channels of energy dissipation open and the damping increases discontinuously. This behavior might stem from spin-wave instabilities

    Reliability of Anode as a Reference Point of Probe Potentials in dc Gas Discharge

    Get PDF

    Characteristics of polar coronal hole jets

    Full text link
    High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be \approx 27 km s1^{-1}. The average outward speed of the first jet is 171\approx 171 km s1^{-1}, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C_{-}poly, Al_{-}poly, and Al_{-}mesh filters. We observed that the second jet drifted at all altitudes along the jet with the same drift speed of \simeq 7 km s1^{-1}. The enhancement in the light curves of low-temperature EIS lines in the later phase of the jet lifetime and the shape of the jet's stack plots suggests that the jet material is falls back, and most likely cools down. To support this conclusion, the observed drifts were interpreted within a scenario where reconnection progressively shifts along a magnetic structure, leading to the sequential appearance of jets of about the same size and physical characteristics. On this basis, we also propose a simple qualitative model that mimics the observations.Comment: Accepted Astronomy and Astrophysic

    Quenched Hadron Spectrum and Decay Constants on the lattice

    Get PDF
    In this talk we present the results obtained from a study of O(2000){\cal O}(2000) (quenched) lattice configurations from the APE collaboration, at 6.0β6.46.0\le\beta\le 6.4, using both the Wilson and the SW-Clover fermion action. We determine the light hadronic spectrum and the meson decay constants. For the light-light systems we find an agreement with the experimental data of 5\sim 5% for mesonic masses and 10\sim 10%-15% for baryonic masses and pseudoscalar decay constants; a larger deviation is present for the vector decay constants. For the heavy-light decay constants we find fDs=237±16MeV,fD=221±17MeV(fDs/fD=1.07(4)),fBs=205±35MeV,fB=180±32MeV(fBs/fB=1.14(8))f_{D_s}=237 \pm 16 MeV, f_{D} = 221 \pm 17 MeV (f_{D_s}/f_D=1.07(4)), f_{B_s} = 205 \pm 35 MeV, f_{B} = 180 \pm 32 MeV (f_{B_s}/f_B=1.14(8)), in good agreement with previous estimates.Comment: 8 pages, latex, Talk given at XXV ITEP Winter School of Physics, Moscow - Russia, 18-27 Feb 199

    Spectroscopic Observations of Propagating Disturbances in a Polar Coronal Hole: Evidence of Slow Magneto-acoustic Waves

    Full text link
    We focus on detecting and studying quasi-periodic propagating features that have been interpreted both in terms of slow magneto-acoustic waves and of high speed upflows. We analyze long duration spectroscopic observations of the on-disk part of the south polar coronal hole taken on 1997 February 25 by the SUMER spectrometer aboard SOHO. We calibrated the velocity with respect to the off-limb region and obtain time--distance maps in intensity, Doppler velocity and line width. We also perform a cross correlation analysis on different time series curves at different latitudes. We study average spectral line profiles at the roots of propagating disturbances and along the propagating ridges, and perform a red-blue asymmetry analysis. We find the clear presence of propagating disturbances in intensity and Doppler velocity with a projected propagation speed of about 60±4.860\pm 4.8 km s1^{-1} and a periodicity of \approx14.5 min. To our knowledge, this is the first simultaneous detection of propagating disturbances in intensity as well as in Doppler velocity in a coronal hole. During the propagation, an intensity enhancement is associated with a blue-shifted Doppler velocity. These disturbances are clearly seen in intensity also at higher latitudes (i.e. closer to the limb), while disturbances in Doppler velocity becomes faint there. The spectral line profiles averaged along the propagating ridges are found to be symmetric, to be well fitted by a single Gaussian, and have no noticeable red-blue asymmetry. Based on our analysis, we interpret these disturbances in terms of propagating slow magneto-acoustic waves.Comment: accepted for publication by A&

    Phenomenology with Wilson fermions using smeared sources

    Full text link
    We investigate the use of two types of non-local (``smeared'') sources for quark propagators in quenched lattice QCD at β=6.0\beta=6.0 using Wilson fermions at κ=0.154\kappa=0.154 and 0.1550.155. We present results for the hadron mass spectrum, meson decay constants, quark masses, the chiral condensate and the quark distribution amplitude of the pion. The use of smeared sources leads to a considerable improvement over previous results. We find a disturbing discrepancy between the baryon spectra obtained using Wuppertal and wall sources. We find good signals in the ratio of correlators used to calculate the quark mass and the chiral condensate and show that the extrapolation to the chiral limit is smooth.Comment: (revised), 57 pages (29 pages of PostScript in landscape mode, 765924 bytes

    Magnetic Transition in the Kondo Lattice System CeRhSn2

    Full text link
    Our resistivity, magnetoresistance, magnetization and specific heat data provide unambiguous evidence that CeRhSn2 is a Kondo lattice system which undergoes magnetic transition below 4 K.Comment: 3 pages text and 5 figure

    Mass spectrometer calibration of Cosmic Dust Analyzer

    Get PDF
    The time of flight mass spectrometer of the Cosmic Dust Analyzer (CDA) instrument aboard the Cassini spacecraft, is expected to be placed in orbit about Saturn to sample the ring material and satellite impact ejecta. Upon impact of an incident dust particle against the target plate at velocities of 5-100 km/s, some 10–8 to 10–5 times the particle mass of positive valence, single-charged ions is induced. These are analyzed via a time-of-flight mass spectrometer. Initial experiments employing a pulsed N2 laser (>300 µJ/pulse, 4ns, 337nm) acting on a suite of samples are described. The laser beam is focussed to deliver the light pulses onto a laser power density (1011 W/cm2) to simulate the impact of particles. Laser ionization produced a charge of 4.6 pC per pulse for aluminum alloy. Estimating that each Al+1 ion require energy of 5.98 eV ionization energy/ion implies that 10–5% of the laser energy produced ions and the present system has a 5% efficiency of collecting the laser-irradiation induced ions. Employing a multi-channel plate detector in this mass spectrometer yields for Al-Mg-Cu alloy and kamacite (Fe-Ni mineral) targets well defined peaks at 24 (Mg+1), 27 (Al+1) and 64 (Cu+1), and 56 (Fe+1), 58 (Ni+1) and 60 (Ni+1) dalton, respectively
    corecore