64,624 research outputs found

    Flexible matrix composite laminated disk/ring flywheel

    Get PDF
    An energy storage flywheel consisting of a quasi-isotropic composite disk overwrapped by a circumferentially wound ring made of carbon fiber and a elastometric matrix is proposed. Through analysis it was demonstrated that with an elastomeric matrix to relieve the radial stresses, a laminated disk/ring flywheel can be designed to store a least 80.3 Wh/kg or about 68% more than previous disk/ring designs. at the same time the simple construction is preserved

    Interacting Quantum Topologies and the Quantum Hall Effect

    Get PDF
    The algebra of observables of planar electrons subject to a constant background magnetic field B is given by A_theta(R^2) x A_theta(R^2) the product of two mutually commuting Moyal algebras. It describes the free Hamiltonian and the guiding centre coordinates. We argue that A_theta(R^2) itself furnishes a representation space for the actions of these two Moyal algebras, and suggest physical arguments for this choice of the representation space. We give the proper setup to couple the matter fields based on A_theta(R^2) to electromagnetic fields which are described by the abelian commutative gauge group G_c(U(1)), i.e. gauge fields based on A_0(R^2). This enables us to give a manifestly gauge covariant formulation of integer quantum Hall effect (IQHE). Thus, we can view IQHE as an elementary example of interacting quantum topologies, where matter and gauge fields based on algebras A_theta^prime with different theta^prime appear. Two-particle wave functions in this approach are based on A_theta(R^2) x A_theta(R^2). We find that the full symmetry group in IQHE, which is the semi-direct product SO(2) \ltimes G_c(U(1)) acts on this tensor product using the twisted coproduct Delta_theta. Consequently, as we show, many particle sectors of each Landau level have twisted statistics. As an example, we find the twisted two particle Laughlin wave functions.Comment: 10 pages, LaTeX, Corrected typos, Published versio

    Fe and N self-diffusion in non-magnetic Fe:N

    Full text link
    Fe and N self-diffusion in non-magnetic FeN has been studied using neutron reflectivity. The isotope labelled multilayers, FeN/57Fe:N and Fe:N/Fe:15N were prepared using magnetron sputtering. It was remarkable to observe that N diffusion was slower compared to Fe while the atomic size of Fe is larger compared to N. An attempt has been made to understand the diffusion of Fe and N in non-magnetic Fe:N

    Noncommutative BTZ Black Hole and Discrete Time

    Get PDF
    We search for all Poisson brackets for the BTZ black hole which are consistent with the geometry of the commutative solution and are of lowest order in the embedding coordinates. For arbitrary values for the angular momentum we obtain two two-parameter families of contact structures. We obtain the symplectic leaves, which characterize the irreducible representations of the noncommutative theory. The requirement that they be invariant under the action of the isometry group restricts to R×S1R\times S^1 symplectic leaves, where RR is associated with the Schwarzschild time. Quantization may then lead to a discrete spectrum for the time operator.Comment: 10 page

    Waves on Noncommutative Spacetimes

    Get PDF
    Waves on ``commutative'' spacetimes like R^d are elements of the commutative algebra C^0(R^d) of functions on R^d. When C^0(R^d) is deformed to a noncommutative algebra {\cal A}_\theta (R^d) with deformation parameter \theta ({\cal A}_0 (R^d) = C^0(R^d)), waves being its elements, are no longer complex-valued functions on R^d. Rules for their interpretation, such as measurement of their intensity, and energy, thus need to be stated. We address this task here. We then apply the rules to interference and diffraction for d \leq 4 and with time-space noncommutativity. Novel phenomena are encountered. Thus when the time of observation T is so brief that T \leq 2 \theta w, where w is the frequency of incident waves, no interference can be observed. For larger times, the interference pattern is deformed and depends on \frac{\theta w}{T}. It approaches the commutative pattern only when \frac{\theta w}{T} goes to 0. As an application, we discuss interference of star light due to cosmic strings.Comment: 19 pages, 5 figures, LaTeX, added references, corrected typo

    Laser-assisted solar cell metallization processing

    Get PDF
    Laser-assisted processing techniques for producing high-quality solar cell metallization patterns are being investigated, developed, and characterized. The tasks comprising these investigations are outlined

    The Chern-Simons Source as a Conformal Family and Its Vertex Operators

    Full text link
    In a previous work, a straightforward canonical approach to the source-free quantum Chern-Simons dynamics was developed. It makes use of neither gauge conditions nor functional integrals and needs only ideas known from QCD and quantum gravity. It gives Witten's conformal edge states in a simple way when the spatial slice is a disc. Here we extend the formalism by including sources as well. The quantum states of a source with a fixed spatial location are shown to be those of a conformal family, a result also discovered first by Witten. The internal states of a source are not thus associated with just a single ray of a Hilbert space. Vertex operators for both abelian and nonabelian sources are constructed. The regularized abelian Wilson line is proved to be a vertex operator. We also argue in favor of a similar nonabelian result. The spin-statistics theorem is established for Chern-Simons dynamics even though the sources are not described by relativistic quantum fields. The proof employs geometrical methods which we find are strikingly transparent and pleasing. It is based on the research of European physicists about ``fields localized on cones.'

    Non-destructive Orthonormal State Discrimination

    Full text link
    We provide explicit quantum circuits for the non-destructive deterministic discrimination of Bell states in the Hilbert space CdnC^{d^{n}}, where dd is qudit dimension. We discuss a method for generalizing this to non-destructive measurements on any set of orthogonal states distributed among nn parties. From the practical viewpoint, we show that such non-destructive measurements can help lower quantum communication complexity under certain conditions.Comment: 11 pages, 6 fugure
    corecore