17 research outputs found

    Planning Implementation Success of Syncope Clinical Practice Guidelines in the Emergency Department Using CFIR Framework

    Get PDF
    Background and Objectives: Overuse and inappropriate use of testing and hospital admission are common in syncope evaluation and management. Though guidelines are available to optimize syncope care, research indicates that current clinical guidelines have not significantly impacted resource utilization surrounding emergency department (ED) evaluation of syncope. Matching implementation strategies to barriers and facilitators and tailoring strategies to local context hold significant promise for a successful implementation of clinical practice guidelines (CPG). Our team applied implementation science principles to develop a stakeholder-based implementation strategy. Methods and Materials: We partnered with patients, family caregivers, frontline clinicians and staff, and health system administrators at four health systems to conduct quantitative surveys and qualitative interviews for context assessment. The identification of implementation strategies was done by applying the CFIR-ERIC Implementation Strategy Matching Tool and soliciting stakeholders’ inputs. We then co-designed with patients and frontline teams, and developed and tested specific strategies. Results: A total of 114 clinicians completed surveys and 32 clinicians and stakeholders participated in interviews. Results from the surveys and interviews indicated low awareness of syncope guidelines, communication challenges with patients, lack of CPG protocol integration into ED workflows, and organizational process to change as major barriers to CPG implementation. Thirty-one patients and their family caregivers participated in interviews and expressed their expectations: clarity regarding their diagnosis, context surrounding care plan and diagnostic testing, and a desire to feel cared about. Identifying change methods to address the clinician barriers and patients and family caregivers expectations informed development of the multilevel, multicomponent implementation strategy, MISSION, which includes patient educational materials, mentored implementation, academic detailing, Syncope Optimal Care Pathway and a corresponding mobile app, and Lean quality improvement methods. The pilot of MISSION demonstrated feasibility, acceptability and initial success on appropriate testing. Conclusions: Effective multifaceted implementation strategies that target individuals, teams, and healthcare systems can be employed to plan successful implementation and promote adherence to syncope CPGs

    Predicting in-Hospital Mortality After an in-Hospital Cardiac Arrest: A Multivariate Analysis

    Get PDF
    Aim of the study: Most survivors of an in-hospital cardiac arrest do not leave the hospital alive, and there is a need for a more patient-centered, holistic approach to the assessment of prognosis after an arrest. We sought to identify pre-, peri-, and post-arrest variables associated with in-hospital mortality amongst survivors of an in-hospital cardiac arrest. Methods: This was a retrospective cohort study of patients ≥18 years of age who were resuscitated from an in-hospital arrest at our University Medical Center from January 1, 2013 to September 31, 2016. In-hospital mortality was chosen as a primary outcome and unfavorable discharge disposition (discharge disposition other than home or skilled nursing facility) as a secondary outcome. Results: 925 patients comprised the in-hospital arrest cohort with 305 patients failing to survive the arrest and a further 349 patients surviving the initial arrest but dying prior to hospital discharge, resulting in an overall survival of 29%. 620 patients with a ROSC of greater than 20 min following the in-hospital arrest were included in the final analysis. In a stepwise multivariable regression analysis, recurrent cardiac arrest, increasing age, time to ROSC, higher serum creatinine levels, and a history of cancer were predictors of in-hospital mortality. A history of hypertension was found to exert a protective effect on outcomes. In the regression model including serum lactate, increasing lactate levels were associated with lower odds of survival. Conclusion: Amongst survivors of in-hospital cardiac arrest, recurrent cardiac arrest was the strongest predictor of poor outcomes with age, time to ROSC, pre-existing malignancy, and serum creatinine levels linked with increased odds of in-hospital mortality

    APOΕ4 Lowers Energy Expenditure in Females and Impairs Glucose Oxidation by Increasing Flux through Aerobic Glycolysis

    Get PDF
    BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer\u27s disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field. METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4. RESULTS: Single-cell analysis of brain tissue from mice expressing human APOE revealed E4-associated decreases in genes related to oxidative phosphorylation, particularly in astrocytes. This shift was confirmed on a metabolic level with isotopic tracing of 13C-glucose in E4 mice and astrocytes, which showed decreased pyruvate entry into the TCA cycle and increased lactate synthesis. Metabolic phenotyping of E4 astrocytes showed elevated glycolytic activity, decreased oxygen consumption, blunted oxidative flexibility, and a lower rate of glucose oxidation in the presence of lactate. Together, these cellular findings suggest an E4-associated increase in aerobic glycolysis (i.e. the Warburg effect). To test whether this phenomenon translated to APOE4 humans, we analyzed the plasma metabolome of young and middle-aged human participants with and without the Ε4 allele, and used indirect calorimetry to measure whole body oxygen consumption and energy expenditure. In line with data from E4-expressing female mice, a subgroup analysis revealed that young female E4 carriers showed a striking decrease in energy expenditure compared to non-carriers. This decrease in energy expenditure was primarily driven by a lower rate of oxygen consumption, and was exaggerated following a dietary glucose challenge. Further, the stunted oxygen consumption was accompanied by markedly increased lactate in the plasma of E4 carriers, and a pathway analysis of the plasma metabolome suggested an increase in aerobic glycolysis. CONCLUSIONS: Together, these results suggest astrocyte, brain and system-level metabolic reprogramming in the presence of APOE4, a \u27Warburg like\u27 endophenotype that is observable in young females decades prior to clinically manifest AD

    Spectacular Nucleosynthesis from Early Massive Stars

    Get PDF
    Stars that formed with an initial mass of over 50 M ⊙ are very rare today, but they are thought to be more common in the early Universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early follow-up of the SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early Universe. J0931+0038 has a relatively high metallicity ([Fe/H] = −1.76 ± 0.13) but an extreme odd–even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass >50 M ⊙, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However, the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates the study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys

    The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V

    Full text link
    The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Comment: Accepted to ApJ

    The eighteenth data release of the Sloan Digital Sky Surveys : targeting and first spectra from SDSS-V

    Get PDF
    The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Publisher PDFPeer reviewe

    Practical consensus recommendations on management of triple-negative metastatic breast cancer

    No full text
    Patients with breast cancer along with metastatic estrogen and progesterone receptor (ER/PR)- and human epidermal growth factor receptor 2 (HER2)-negative tumors are referred to as having metastatic triple-negative breast cancer (mTNBC) disease. Resistance to current standard therapies such as anthracyclines or taxanes limits the available options for previously treated patients with metastatic TNBC to a small number of non-cross-resistant regimens, and there is currently no preferred standard chemotherapy. Clinical experience suggests that many women with triple-negative metastatic breast cancer (MBC) relapse quickly. Expert oncologist discussed about new chemotherapeutic strategies and agents used in treatment of mTNBC and the expert group used data from published literature, practical experience and opinion of a large group of academic oncologists to arrive at this practical consensus recommendations for the benefit of community oncologists

    Abstract 4867: Identification of an inv(16)-encoded CBFA2T3-GLIS2 fusion protein in 34% of non-infant acute megkaryoblastic leukemias: A report from the Pediatric Cancer Genome Project

    No full text
    Abstract Acute Megakaryoblastic Leukemia (AMKL) accounts for ∼10% of childhood acute myeloid leukemia (AML). Although AMKL patients with Down syndrome (DS-AMKL) have an excellent 5 year event-free survival (EFS), non-DS-AMKL patients have an extremely poor outcome with a 3 year EFS < 40%. To define the landscape of mutations that occur in non-DS-AMKL, we performed transcriptome sequencing on diagnostic blasts from 14 cases. Our results identified chromosomal rearrangements resulting in the expression of novel fusion transcripts in 12/14 cases. Remarkably, in 7/14 cases, we detected an inversion on chromosome 16 [inv(16)(p13.3;q24.3)] that resulted in the juxtaposition of CBFA2T3, a member of the ETO family of transcription factors, next to GLIS2 resulting in a CBFA2T3-GLIS2 chimeric gene encoding an in frame fusion protein. GLIS2 is a member of the GLI family of transcription factors that mediate sonic hedgehog (SHH) signaling and has been demonstrated to play a role in regulating expression of GLI target genes. Evaluation of a recurrency cohort of 52 samples including 24 additional pediatric cases and 28 adult cases revealed 6 additional pediatric samples carrying the fusion for an overall frequency of 34% in pediatric AMKL. To gain insight into the mechanism whereby CBFA2T3-GLIS2 promotes leukemogenesis, we introduced the fusion into murine hematopoietic cells and assessed its effect on in vitro colony replating as a surrogate measure of self-renewal. Cells transduced with a mCherry expressing retrovirus failed to form colonies after the 2nd replating. By contrast, expression of either wild-type GLIS2 or CBFA2T3-GLIS2 resulted in a marked increase in the self-renewal capacity, with colony formation persisting through 12 replatings. Immunophenotypic analysis of the CBFA2T3-GLIS2 expressing colonies revealed evidence of megakaryocytic differentiation. GLI transcription factors modulate expression of multiple downstream targets including components of BMP, WNT, and SHH pathways. To interrogate these pathways as potential contributors to the enhanced self-renewal capacity, we conducted luciferase reporter assays and found that CBFA2T3-GLIS2 functioned as a strong activator of the BMP responsive element. Furthermore, expression of CBFA2T3-GLIS2 in Drosophila resulted in ectopic expression of endogenous dpp, the fly homolog of BMP4, and conferred a dpp gain of function phenotype. Taken together these data identify a novel inv(16)-encoded CBFA2T3-GLIS2 fusion protein as a recurrent driver mutation in ∼35% of non-infant pediatric non-DS-AMKLs. The alteration of a key transcriptional regulator within the SHH signaling pathways in a substantial percentage of pediatric AMKL raises the possibility that inhibition of this pathway or downstream activated pathways may have a therapeutic benefit in this aggressive form of AML. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4867. doi:1538-7445.AM2012-486
    corecore