193 research outputs found

    Modeling of Transient Trapping of Fatty Acid Tails in Phospholipids

    Get PDF
    We present the derivation of a new model to describe neutron spin echo spectroscopy and quasi-elastic neutron scattering data on liposomes. We compare the new model with existing approaches and benchmark it with experimental data. The analysis indicates the importance of including all major contributions into modeling of the intermediate scattering function. Simultaneous analysis of the experimental data on lipids with full contrast and tail contrast matched samples, reveals highly confined lipid tail motion. A comparison of their dynamics demonstrates the statistical independ-ence of tail-motion and height-height correlation of the membrane. A more detailed analysis indi-cates that lipid tails are subject to relaxations in a potential with cylindrical symmetry, in addition to the undulation and diffusive motion of the liposome. Despite substantial differences in the chemis-try of the fatty acid tails, the observation indicates a universal behavior. The analysis of partially deuterated systems confirms the strong contribution of the lipid tail to the intermediate scattering function. Within the time range from 5 to 100 ns, the intermediate scattering function can be de-scribed by the height-height correlation function. The existence of the fast-localized tail motion and the contribution of slow translational diffusion of liposomes determines the intermediate scattering function for t 100 ns, respectively. Taking into account the limited time window lowers the bending moduli by a factor of 1.3 (DOPC) to 2 (DMPC) compared to the full range.Comment: 33 pages, 5 figures, published in Soft Matte

    Validity of Stokes-Einstein Relation in Soft Colloids up to the Glass Transition

    Get PDF
    We investigate the dynamics of kinetically frozen block copolymer micelles of different softness across a wide range of particle concentrations, from the fluid to the onset of glassy behavior, through a combination of rheology, dynamic light scattering and pulsed field gradient NMR spectroscopy. We additionally perform Brownian dynamics simulations based on an ultrasoft coarse-grained potential, which are found to be in quantitative agreement with experiments, capturing even the very details of dynamic structure factors S(Q, t) on approaching the glass transition. We provide evidence that for these systems the Stokes-Einstein relation holds up to the glass transition; given that it is violated for dense suspensions of hard colloids, our findings suggest that its validity is an intriguing signature of ultrasoft interactions.Comment: 5 pages, 4 figures, Supplementary Information, Accepted to Physical Review Letters (PRL) (2015

    Characteristic length scales of the secondary relaxations in glass-forming glycerol

    Get PDF
    We investigate the secondary relaxations and their link to the main structural relaxation in glass-forming liquids using glycerol as a model system. We analyze the incoherent neutron scattering signal dependence on the scattering momentum transfer, Q , in order to obtain the characteristic length scale for different secondary relaxations. Such a capability of neutron scattering makes it somewhat unique and highly complementary to the traditional techniques of glass physics, such as light scattering and broadband dielectric spectroscopy, which provide information on the time scale, but not the length scales, of relaxation processes. The choice of suitable neutron scattering techniques depends on the time scale of the relaxation of interest. We use neutron backscattering to identify the characteristic length scale of 0.7 Å for the faster secondary relaxation described in the framework of the mode-coupling theory (MCT). Neutron spin-echo is employed to probe the slower secondary relaxation of the excess wing type at a low temperature ( ∼ 1.13Tg . The characteristic length scale for this excess wing dynamics is approximately 4.7 Å. Besides the Q -dependence, the direct coupling of neutron scattering signal to density fluctuation makes this technique indispensable for measuring the length scale of the microscopic relaxation dynamics

    Sustainable Biomaterials: Current Trends, Challenges and Applications

    Get PDF
    Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resource
    • …
    corecore