64 research outputs found

    Third generation biosensing matrix based on Fe-implanted ZnO thin film

    No full text
    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM−1 cm−2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.We are thankful to DST India and DIISR Australia for a grant under Indo-Australia strategic research initiative. Financial support from UGC is acknowledged by S.S., K.S., and V.G. S.S. is also thankful to University of Delhi for teaching assistantship. The Australian authors acknowledge financial support of the Australian National Council. Facilities at the ANU used in this work are supported by the Australian National Fabrication Facility

    Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity

    Get PDF
    The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium

    Informational entropy : a failure tolerance and reliability surrogate for water distribution networks

    Get PDF
    Evolutionary algorithms are used widely in optimization studies on water distribution networks. The optimization algorithms use simulation models that analyse the networks under various operating conditions. The solution process typically involves cost minimization along with reliability constraints that ensure reasonably satisfactory performance under abnormal operating conditions also. Flow entropy has been employed previously as a surrogate reliability measure. While a body of work exists for a single operating condition under steady state conditions, the effectiveness of flow entropy for systems with multiple operating conditions has received very little attention. This paper describes a multi-objective genetic algorithm that maximizes the flow entropy under multiple operating conditions for any given network. The new methodology proposed is consistent with the maximum entropy formalism that requires active consideration of all the relevant information. Furthermore, an alternative but equivalent flow entropy model that emphasizes the relative uniformity of the nodal demands is described. The flow entropy of water distribution networks under multiple operating conditions is discussed with reference to the joint entropy of multiple probability spaces, which provides the theoretical foundation for the optimization methodology proposed. Besides the rationale, results are included that show that the most robust or failure-tolerant solutions are achieved by maximizing the sum of the entropies

    Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    No full text
    Highly c-axis oriented Al and Fe co-doped ZnO (ZAF) thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase), was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ∼ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor

    Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis

    Full text link
    Plant cell growth requires the coordinated expansion of the protoplast and the cell wall, which is controlled by an elaborate system of cell wall integrity (CWI) sensors linking the different cellular compartments. LRR-eXtensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (Rapid ALkalinization Factor) peptide hormones that trigger diverse physiological processes related to cell growth. LRXs function in CWI sensing and in the case of LRX4 of Arabidopsis thaliana, this activity was shown to involve interaction with the transmembrane Catharanthus roseus Receptor-Like Kinase1-Like (CrRLK1L) protein FERONIA (FER). Here, we demonstrate that binding of RALF1 and FER is common to most tested LRXs of vegetative tissue, including LRX1, the main LRX protein of root hairs. Consequently, an lrx1-lrx5 quintuple mutant line develops shoot and root phenotypes reminiscent of the fer-4 knock-out mutant. The previously observed membrane-association of LRXs, however, is FER-independent, suggesting that LRXs bind not only FER but also other membrane-localized proteins to establish a physical link between intra- and extracellular compartments. Despite evolutionary diversification of various LRX proteins, overexpression of several chimeric LRX constructs causes cross-complementation of lrx mutants, indicative of comparable functions among members of this protein family. Suppressors of the pollen-growth defects induced by mutations in the CrRLK1Ls ANXUR1/2 also alleviate lrx1 lrx2-induced mutant root hair phenotypes. This suggests functional similarity of LRX-CrRLK1L signaling processes in very different cell types and indicates that LRX proteins are components of conserved processes regulating cell growth

    Extracellular matrix sensing by FERONIA and Leucine‐Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana

    Get PDF
    Cellular elongation requires the defined coordination of intra‐ and extracellular processes, but the underlying mechanisms are largely unknown. The vacuole is the biggest plant organelle, and its dimensions play a role in defining plant cell expansion rates. Here, we show that the increase in vacuolar occupancy enables cellular elongation with relatively little enlargement of the cytosol in Arabidopsis thaliana. We demonstrate that cell wall properties are sensed and impact on the intracellular expansion of the vacuole. Using vacuolar morphology as a quantitative read‐out for intracellular growth processes, we reveal that the underlying cell wall sensing mechanism requires interaction of extracellular leucine‐rich repeat extensins (LRXs) with the receptor‐like kinase FERONIA (FER). Our data suggest that LRXs link plasma membrane‐localised FER with the cell wall, allowing this module to jointly sense and convey extracellular signals to the cell. This mechanism coordinates the onset of cell wall acidification and loosening with the increase in vacuolar size

    A Novel ZnO-Methylene Blue Nanocomposite Matrix for Biosensing Application

    No full text
    A novel hybrid matrix of zinc oxide-methylene blue (ZnO-MB) has been successfully developed for biosensing application. The introduction of methylene blue into the ZnO thin film leads to reduction in the charge transfer resistance and suggests an increase in the electron transfer capacity of the composite. Glucose oxidase (GOx) was chosen as the model enzyme and effectively immobilized on the surface of hybrid ZnO-MB nanocomposite matrix. Electrochemical measurements were employed to study biosensing response of the GOx/ZnO-MB/ITO bioelectrode as a function of glucose concentration. The low oxidation potential (−0.23 V) of the hybrid bioelectrode, in a mediatorless electrolyte, makes it resistant against interference from other bio-molecules. The low value of Michaelis-Menten constant (2.65 mM) indicates that immobilized GOx retains its enzymatic activity significantly on the surface of nanocomposite hybrid matrix that results in an enhanced affinity towards its substrate (glucose). The ZnO-MB nanocomposite hybrid matrix, exhibiting enhanced sensing response (0.2 μAmM−1cm−2) with long shelf-life (\u3e10 weeks), has potential for the realization of an integrated biosensing device
    corecore