53,536 research outputs found

    Observations of Dissipation of Slow Magneto-acoustic Waves in a Polar Coronal Hole

    Full text link
    We focus on a polar coronal hole region to find any evidence of dissipation of propagating slow magneto-acoustic waves. We obtained time-distance and frequency-distance maps along the plume structure in a polar coronal hole. We also obtained Fourier power maps of the polar coronal hole in different frequency ranges in 171~\AA\ and 193~\AA\ passbands. We performed intensity distribution statistics in time domain at several locations in the polar coronal hole. We find the presence of propagating slow magneto-acoustic waves having temperature dependent propagation speeds. The wavelet analysis and Fourier power maps of the polar coronal hole show that low-frequency waves are travelling longer distances (longer detection length) as compared to high-frequency waves. We found two distinct dissipation length scales of wave amplitude decay at two different height ranges (between 0--10 Mm and 10--70 Mm) along the observed plume structure. The dissipation lengths obtained at higher height range show some frequency dependence. Individual Fourier power spectrum at several locations show a power-law distribution with frequency whereas probability density function (PDF) of intensity fluctuations in time show nearly Gaussian distributions. Propagating slow magneto-acoustic waves are getting heavily damped (small dissipation lengths) within the first 10~Mm distance. Beyond that waves are getting damped slowly with height. Frequency dependent dissipation lengths of wave propagation at higher heights may indicate the possibility of wave dissipation due to thermal conduction, however, the contribution from other dissipative parameters cannot be ruled out. Power-law distributed power spectra were also found at lower heights in the solar corona, which may provide viable information on the generation of longer period waves in the solar atmosphere.Comment: corrected typos and grammar, In press A&

    Barrier modification in sub-barrier fusion reactions using Wong formula with Skyrme forces in semiclassical formalism

    Full text link
    We obtain the nuclear proximity potential by using semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), and use it in the extended \ell-summed Wong formula under frozen density approximation. This method has the advantage of allowing the use of different Skyrme forces, giving different barriers. Thus, for a given reaction, we could choose a Skyrme force with proper barrier characteristics, not-requiring extra ``barrier lowering" or ``barrier narrowing" for a best fit to data. For the 64^{64}Ni+100^{100}Mo reaction, the \ell-summed Wong formula, with effects of deformations and orientations of nuclei included, fits the fusion-evaporation cross section data exactly for the force GSkI, requiring additional barrier modifications for forces SIII and SV. However, the same for other similar reactions, like 58,64^{58,64}Ni+58,64^{58,64}Ni, fits the data best for SIII force. Hence, the barrier modification effects in \ell-summed Wong expression depends on the choice of Skyrme force in extended ETF method.Comment: INPC2010, Vancouver, CANAD

    Staggered fermion matrix elements using smeared operators

    Get PDF
    We investigate the use of two kinds of staggered fermion operators, smeared and unsmeared. The smeared operators extend over a 444^4 hypercube, and tend to have smaller perturbative corrections than the corresponding unsmeared operators. We use these operators to calculate kaon weak matrix elements on quenched ensembles at β=6.0\beta=6.0, 6.2 and 6.4. Extrapolating to the continuum limit, we find BK(NDR,2GeV)=0.62±0.02(stat)±0.02(syst)B_K(NDR, 2 GeV)= 0.62\pm 0.02(stat)\pm 0.02(syst). The systematic error is dominated by the uncertainty in the matching between lattice and continuum operators due to the truncation of perturbation theory at one-loop. We do not include any estimate of the errors due to quenching or to the use of degenerate ss and dd quarks. For the ΔI=3/2\Delta I = {3/2} electromagnetic penguin operators we find B7(3/2)=0.62±0.03±0.06B_7^{(3/2)} = 0.62\pm 0.03\pm 0.06 and B8(3/2)=0.77±0.04±0.04B_8^{(3/2)} = 0.77\pm 0.04\pm 0.04. We also use the ratio of unsmeared to smeared operators to make a partially non-perturbative estimate of the renormalization of the quark mass for staggered fermions. We find that tadpole improved perturbation theory works well if the coupling is chosen to be \alpha_\MSbar(q^*=1/a).Comment: 22 pages, 1 figure, uses eps

    Hinode EIS line widths in the quiet corona up to 1.5 Rsun

    Full text link
    We present an analysis of several Hinode EIS observations of coronal line widths in the quiet Sun, up to 1.5 Rsun radial distances. No significant variations are found, which indicates no damping of Alfv\'en waves in the quiescent corona. However, the uncertainties in estimating the instrumental width mean that a firm conclusion cannot be reached. We present a discussion of various EIS instrumental issues and suggest that the strongest lines, from Fe XII at 193.5 and 195.1 A, have anomalous instrumental widths. We show how line widths in EIS are uncertain when the signal is low, and that the instrumental variation along the slit is also uncertain. We also found an anomalous decrease (up to 40%) in the intensities of these lines in many off-limb and active region observations, and suggest that this is due to opacity effects. We find that the most reliable measurements are obtained from the weaker lines.Comment: Submitted to A&A, under revision - comments welcome

    Sea Contributions to Spin 1/2 Baryon Structure, Magnetic Moments, and Spin Distribution

    Get PDF
    We treat the baryon as a composite system made out of a \lq\lq core" of three quarks (as in the standard quark model) surrounded by a \lq\lq sea" (of gluons and qqˉq\bar{q}-pairs) which is specified by its total quantum numbers like flavor, spin and color. Specifically, we assume the sea to be a flavor octet with spin 0 or 1 but no color. The general wavefunction for spin 1/2 baryons with such a sea component is given. Application to the magnetic moments is considered. Numerical analysis shows that a scalar (spin 0) sea with an admixture of a vector (spin 1) sea can provide very good fits to the magnetic moment data {\em using experimental errors}. Our best fit automatically gives gA/gVg_A/g_V for neutron beta decay in agreement with data. This fit also gives reasonable values for the spin distributions of the proton and neutron.Comment: 24 pages, REVTEX. References modifie

    Moessbauer studies in zinc-manganese ferrites for use in measuring small velocities and accelerations with great precision

    Get PDF
    Mossbauer spectroscopy was used for a systematic study of the magnetic behavior of manganese and zinc in mixed ferrites. It was observed that Zn2+ has preference to substitute Mn2+ at interstitial sites where the metal ions are tetrahedrally coordinated with four oxygen neighbors. The internal magnetic hyperfine field at the tetrahedral iron site is larger than that at the octahedral site. The relaxation effects were observed to play an important role as the zinc contents were increased, while the spin-correlation time and the magnetic field were observed to decrease in strength. It is concluded that Mossbauer effect data on complex materials, when used in conjunction with other data, can provide useful insight into the origin of the microscopic properties of magnetic materials

    Dynamical cluster-decay model for hot and rotating light-mass nuclear systems, applied to low-energy 32^{32}S + 24^{24}Mg 56\to ^{56}Ni reaction

    Full text link
    The dynamical cluster-decay model (DCM) is developed further for the decay of hot and rotating compound nuclei (CN) formed in light heavy-ion reactions. The model is worked out in terms of only one parameter, namely the neck-length parameter, which is related to the total kinetic energy TKE(T) or effective Q-value Qeff(T)Q_{eff}(T) at temperature T of the hot CN, defined in terms of the both the light-particles (LP), with AA \leq 4, Z \leq 2, as well as the complex intermediate mass fragments (IMF), with 424 2, is considered as the dynamical collective mass motion of preformed clusters through the barrier. Within the same dynamical model treatment, the LPs are shown to have different characteristics as compared to the IMFs. The systematic variation of the LP emission cross section σLP\sigma_{LP}, and IMF emission cross section σIMF\sigma_{IMF}, calculated on the present DCM match exactly the statistical fission model predictions. It is for the first time that a non-statistical dynamical description is developed for the emission of light-particles from the hot and rotating CN. The model is applied to the decay of 56^{56}Ni formed in the 32^{32}S + 24^{24}Mg reaction at two incident energies Ec.m._{c.m.} = 51.6 and 60.5 MeV. Both the IMFs and average TKEˉ\bar{TKE} spectra are found to compare reasonably nicely with the experimental data, favoring asymmetric mass distributions. The LPs emission cross section is shown to depend strongly on the type of emitted particles and their multiplicities
    corecore