90 research outputs found

    Fundamental solutions of an extended hydrodynamic model in two dimensions: derivation, theory and applications

    Full text link
    The inability of the Navier-Stokes-Fourier equations to capture rarefaction effects motivates us to adopt the extended hydrodynamic equations. In the present work, a hydrodynamic model comprised of the conservation laws closed with the recently propounded coupled constitutive relations (CCR) -- referred to as the CCR model -- adequate for describing moderately rarefied gas is utilized. A numerical framework based on the method of fundamental solutions is developed and employed to solve the CCR model in two dimensions. To this end, the fundamental solutions of the linearized CCR model are derived in two dimensions. The significance of deriving the two-dimensional fundamental solutions is that they cannot be deduced from their three-dimensional counterparts that do exist in literature. As applications, the developed numerical framework based on the derived fundamental solutions is used to simulate (i) a rarefied gas flow confined between two coaxial cylinders with evaporating walls and (ii) a temperature-driven rarefied gas flow between two non-coaxial cylinders. The results for both problems have been validated against those obtained with the other classical approaches. Through this, it is shown that the method of fundamental solutions is an efficient tool for addressing two-dimensional multiphase microscale gas flow problems at a low computational cost. Moreover, the findings also show that the CCR model solved with the method of fundamental solutions depicts rarefaction effects, like transpiration flows and thermal stress, generally well.Comment: 14 figure

    University Information Search and Application Portal

    Get PDF
    University Information Search and Application Portal which is based on the TripAdvisor style of and ranking system with university reviews from existing and ex-students a university

    Coupled constitutive relations: a second law based higher order closure for hydrodynamics

    Get PDF
    In the classical framework, the Navier-Stokes-Fourier equations are obtained through the linear uncoupled thermodynamic force-flux relations which guarantee the non-negativity of the entropy production. However, the conventional thermodynamic description is only valid when the Knudsen number is sufficiently small. Here, it is shown that the range of validity of the Navier-Stokes-Fourier equations can be extended by incorporating the nonlinear coupling among the thermodynamic forces and fluxes. The resulting system of conservation laws closed with the coupled constitutive relations is able to describe many interesting rarefaction effects, such as Knudsen paradox, transpiration flows, thermal stress, heat flux without temperature gradients, etc., which can not be predicted by the classical Navier-Stokes-Fourier equations. For this system of equations, a set of phenomenological boundary conditions, which respect the second law of thermodynamics, is also derived. Some of the benchmark problems in fluid mechanics are studied to show the applicability of the derived equations and boundary conditions.Comment: 20 pages, 6 figures, Proceedings of the Royal Society A (Open access article

    Skill-Mix: a Flexible and Expandable Family of Evaluations for AI models

    Full text link
    With LLMs shifting their role from statistical modeling of language to serving as general-purpose AI agents, how should LLM evaluations change? Arguably, a key ability of an AI agent is to flexibly combine, as needed, the basic skills it has learned. The capability to combine skills plays an important role in (human) pedagogy and also in a paper on emergence phenomena (Arora & Goyal, 2023). This work introduces Skill-Mix, a new evaluation to measure ability to combine skills. Using a list of NN skills the evaluator repeatedly picks random subsets of kk skills and asks the LLM to produce text combining that subset of skills. Since the number of subsets grows like NkN^k, for even modest kk this evaluation will, with high probability, require the LLM to produce text significantly different from any text in the training set. The paper develops a methodology for (a) designing and administering such an evaluation, and (b) automatic grading (plus spot-checking by humans) of the results using GPT-4 as well as the open LLaMA-2 70B model. Administering a version of to popular chatbots gave results that, while generally in line with prior expectations, contained surprises. Sizeable differences exist among model capabilities that are not captured by their ranking on popular LLM leaderboards ("cramming for the leaderboard"). Furthermore, simple probability calculations indicate that GPT-4's reasonable performance on k=5k=5 is suggestive of going beyond "stochastic parrot" behavior (Bender et al., 2021), i.e., it combines skills in ways that it had not seen during training. We sketch how the methodology can lead to a Skill-Mix based eco-system of open evaluations for AI capabilities of future models
    • …
    corecore