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Abstract

In the classical framework, the Navier-Stokes—Fourier equations are obtained through
the linear uncoupled thermodynamic force-flux relations which guarantee the non-negativity
of the entropy production. However, the conventional thermodynamic description is only
valid when the Knudsen number is sufficiently small. Here, it is shown that the range
of validity of the Navier—Stokes—Fourier equations can be extended by incorporating the
nonlinear coupling among the thermodynamic forces and fluxes. The resulting system of
conservation laws closed with the coupled constitutive relations is able to describe many
interesting rarefaction effects, such as Knudsen paradox, transpiration flows, thermal stress,
heat flux without temperature gradients, etc., which can not be predicted by the classical
Navier—Stokes—Fourier equations. For this system of equations, a set of phenomenological
boundary conditions, which respect the second law of thermodynamics, is also derived. Some
of the benchmark problems in fluid mechanics are studied to show the applicability of the
derived equations and boundary conditions.

1 Introduction

The classical Navier—Stokes—Fourier (NSF) equations are known to fail in describing small-scale
flows, for which the Knudsen number—defined as the ratio of the molecular mean free path to a
characteristic hydrodynamic length scale—is sufficiently large [1, 2]. It is well established that
the traditional NSF equations cannot describe strong non-equilibrium effects, which occur at
high Knudsen numbers; for instance, the classical NSF equations are not able to describe the
heat flux parallel to flow direction which is not forced by temperature gradient [3, 4], nonuniform
pressure profile and characteristic temperature dip in Poiseuille flow [5-7], non-Fourier heat flux
in a lid-driven cavity where heat flows from low temperature to high temperature [8, 9], etc.

Several approaches to irreversible thermodynamics are available to determine the properties
of a system near equilibrium. Linear Irreversible Thermodynamics (LIT) [10, 11] is based on
the assumption of local thermodynamic equilibrium, where thermal and caloric state equation
and the Gibbs equation locally retain the forms they have in equilibrium. Gibbs equation and
conservation laws for mass, momentum and energy are then combined to derive a mathematical
form of the second law of thermodynamics—the balance equation for entropy. The requirement of
positivity of the entropy generation rate leads directly to the constitutive laws for stress tensor
and heat flux, resulting in the well-known laws of Navier-Stokes and Fourier [12, 13].
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Rational Thermodynamics (RT) [14], in an attempt to relax the requirement of local thermo-
dynamic equilibrium, postulates a particular form of the balance law for entropy, the Clausius—
Duhem equation. Here, the non-convective entropy flux is prescribed to be the heat flux divided
by the thermodynamic temperature—a relation that is one of the results of LIT. A careful
evaluation of the conservation laws together with the entropy equation results in constitutive
equations for stress tensor and heat flux. For simple fluids, RT gives the same constitutive
equations as LIT, including the relations that describe local thermodynamic equilibrium [13].

Hence, although their postulates differ, both approaches—LIT and RT—appear to be equiv-
alent for simple fluids. A particular feature of both approaches is the form of the entropy gen-
eration rate as the sum of products of thermodynamic forces and thermodynamic fluxes. The
forces describe deviation from global thermodynamic equilibrium, and typically are gradients,
e.g., those of temperature and velocity. The fluxes, e.g., heat flux and stress tensor, describe
processes that aim to reduce the forces. For processes that are not too far from equilibrium, as
described by LIT and RT, forces and fluxes are mathematically uncoupled, in the sense that the
fluxes do not appear in the expressions for the forces.

The increasing miniaturization of physical devices has directed attention to the strong non-
equilibrium conditions where the classical equations derived by LIT and RT loose their validity,
and must be enhanced by proper extensions of the methods of derivation. In the present contri-
bution, considering rarefied gas flows, we present an enhancement, based on a correction of the
entropy flux that is suggested from the Kinetic Theory of Gases and Extended Thermodynamics
[15].

A detailed description of a gas flow, ranging from near equilibrium to strong non-equilibrium
conditions, is offered by the Boltzmann equation, which solves for the microscopic distribution
function of gas molecules [16]. However, being a nonlinear integro-differential equation, the
Boltzmann equation is difficult to solve and its direct solutions are computationally expensive.
An alternative, but complementary, modeling of a gas can be done through macroscopic de-
scription, in which the behavior of a gas is described by moments of the distribution function
[2, 17]. The main aim of the macroscopic modeling is to reduce the complexity by consider-
ing the transport equations for a finite number of (low-dimensional) moments—referred to as
moment equations—instead of solving the Boltzmann equation for the (high-dimensional) dis-
tribution function. It is worth to note that the physical quantities, such as density, temperature,
velocity, stress tensor and heat flux, in a gas appear as moments of the distribution function.
Moment equations form an open hierarchy of equations, thus requiring a suitable closure. In
kinetic theory, there are many approximation methods for closing a set of moment equations
[17]. The well-known approximation methods include the Hilbert expansion method [1], the
Chapman-Enskog (CE) expansion method [18], the Grad’s moment method [19], regularized
moment method[20, 21], and entropy maximization [22, 23].

The CE expansion method relies on the smallness of the Knudsen number. At zeroth- and
first-order approximations the method leads to the Euler and NSF equations, and is fully equiv-
alent to the results of LIT and RT (local equilibrium, etc.). At the second- and third-order
approximations the method yields the the Burnett and super-Burnett equations, respectively,
which exhibit instabilities for time-dependent problems [24], and are thermodynamically incon-
sistent [25, 26]. During the last decade, several modified forms of the Burnett equations have
been suggested in the literature, see e.g. [27-30], that are stable; however, at present no proper
boundary conditions are available for any of these sets of equations, hence their applicability
is limited. On the other hand, linearized Grad’s 13 (also R13) moment equations comply with
the second law of thermodynamics, which also leads to thermodynamically consistent boundary
conditions for these set of equations [31]. However, no entropy law has been established for the
nonlinear moment equations.

In the following, we propose a phenomenological procedure in which the entropy flux contains
a nonlinear contribution in stress and heat flux, which is motivated by results from Rational



Extended Thermodynamics (RET) [15]. In contrast to RET, where, similar to the moment
method, the set of variables is enlarged to contain non-equilibrium variables, our approach still
uses the basic equilibrium variables and fulfills the main conditions of local thermodynamic
equilibrium (classical thermal and caloric equations of state, Gibbs equation). However, the
additional term in the entropy flux yields additional terms in the entropy generation, which, as
will be seen, can still be written as a sum of products of forces and fluxes, but now the fluxes
appear explicitly in the forces, i.e., the fluxes are coupled through the additional terms in the
forces.

We shall show that the conservation laws together with the resulting coupled constitutive
relations (CCR) can capture many interesting non-equilibrium effects, such as Knudsen paradox,
transpiration flows, thermal stress, heat flux without temperature gradients, etc., in good agree-
ment with experiments and with kinetic theory, e.g., the solution of the Boltzmann equation.

The remainder of the paper is structured as follows. The derivation of the CCR for the
conservation laws is detailed in § 2. A thermodynamically consistent set of boundary conditions
complementing the system of the conservation laws closed with the CCR (referred to as the
CCR system hereafter) is presented in §3. The linear stability of the CCR system is analyzed
in §4 to show that the CCR system is stable to small perturbations. Classical flow problems of
Knudsen minimum and heat transfer in an isothermal lid-driven cavity are investigated in §5.
The paper ends with conclusions in § 6.

2 Derivation of coupled constitutive relations

The conservation laws, which are evolution equations for mass density p, macroscopic velocity
v;, and temperature T', read

g~ o, 1)

e e,
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Here, % denotes the convective time derivative, p is the pressure, I;; is the viscous stress tensor,

qr is the heat flux and Fj is the external force per unit mass. Throughout the paper, Einstein
summation is assumed over the repeated indices unless stated otherwise.

We shall consider monatomic ideal gases only, for which the pressure is p = pRT with R
being the gas constant and specific internal energy is u = ¢, 7" with the specific heat ¢, = 3R /2.
Moreover, for monatomic ideal gases the stress tensor is symmetric and tracefree, i.e., Iy = 0
[2].

It should be noted that conservation laws (1)—(3) contain the stress tensor II;; and heat flux
qr as unknowns, hence constitutive equations are required, which link the these quantities to
the variables p, v; and T

The second law of thermodynamics states that the total entropy of an isolated system can
never decrease over time [10, 13], that is
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where s denotes the specific entropy, ¥y is the non-convective entropy flux and ¥ is the non-
negative entropy generation rate. An important aspect of a constitutive theory is to determine
the appropriate relations among the properties s, ¥y, ¥ and the variables p, v;, T and their
gradients so that the closed conservation laws guarantee the second law of thermodynamics.



2.1 Uncoupled constitutive relations: The NSF equations

In LIT, the constitutive relations for closing the system of conservation laws (1)—(3), are obtained
such that the second law of thermodynamics is satisfied for all thermodynamic processes. For
this, in LIT, local thermodynamic equilibrium is assumed [10, 12], which implies the local validity
of the Gibbs equation
p

Tds:du—ﬁdp. (5)
For convenience, we shall write temperature 7" in energy units as § = RT', and dimensionless
entropy as 7 = s/R, so that the Gibbs equation (5) for a monatomic ideal gas leads to
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Multiplying eq. (6) with p, and replacing Dp/Dt, and D#/Dt using the mass balance equation
(1) and the energy balance equation (3), one obtains the entropy balance equation for LIT,
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Comparison of eq. (7) with eq. (4) gives the LIT expression for non-convective entropy flux as
U = qr/0 and that for the entropy production term as
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The angular brackets around indices represent the symmetric and traceless part of a tensor, for
example,
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where ¢;; being the Kronecker delta tensor.
The entropy production (8) assumes a canonical form, i.e.,

Y= Z jaXaa

. . . 19}
with the thermodynamic fluxes, J, = {Ilx, g1 },, and the thermodynamic forces X, = —% { azgl; , %aa—gi} .
«

The phenomenological closure of LIT demands a linear relation between fluxes and forces of the
form J, = Z L3Xs , where he matrix of phenomenological coefficients depends only on equi-

B
librium properties, L, (p, ), and must be non-negative definite. For proper transformations

between different observer frames, stress and heat flux must be Galilean invariant tensors [13],
and it follows that only forces and fluxes of the same tensor type (scalars, vectors, 2-tensors,
etc.) can be linked (Curie Principle [10]). Accordingly,

vy 00

My =2z and  g=—ng,
J

(10)

where 1 and k are the positive coeflicients of shear viscosity and thermal conductivity, respec-
tively, where factors with 6 are absorbed in the coefficients.

It is worth pointing out that for a monatomic ideal gas interacting with power potentials,
the viscosity depends on temperature alone as

w=(g) (11)

4



where g is the viscosity at a reference temperature 6y and w is referred to as the viscosity
exponent [2, 16]. Furthermore, the heat conductivity is proportional to viscosity, k = %,
where Pr ~ 2/3 denotes the Prandtl number [2].

Relations (10); and (10)2 are the Navier—Stokes law and Fourier’s law, respectively, and we
refer to them as the linear uncoupled constitutive relations—emanating from LIT. When rela-
tions (10) are substituted in conservation laws (1)—(3), they yield the well-known compressible
NSF equations of hydrodynamics.

2.2 Coupled constitutive relations

As mentioned in the introduction, LIT and RT yield identical results for simple fluids—such as
ideal gases—but differ in their assumptions. Indeed, RT assumes the entropy flux ¥y = g /6
that is an outcome in LIT. In a recent paper [32], Paolucci & Paolucci considered entropy
flux as function of the hydrodynamic variables and their gradients in a complete non-linear
representation, but found that only the classical term ¥y, = g /60 is compatible with the second
law of thermodynamics. Nevertheless, allowing higher order contributions for stress and heat
flux, they found additions which are fully non-linear in the gradients. Extended Irreversible
Thermodynamics [15, 33| is similar to LIT, only that non-equilibrium variables, in particular
stress and heat flux, are added, with additional contributions to the Gibbs equation, in an
attempt to go beyond local thermodynamic equilibrium. RET [15] proceeds differently, but also
adds non-equilibrium variables, and yields a non-equilibrium Gibbs equation. The consideration
of local non-equilibrium gives additions to the LIT entropy flux, which appears as explicit
function of the extended set of variables.
In theories of extended thermodynamics for 13 moments, stress tensor Ilg; and heat flux
g; are independent variables [15, 33], and the entropy flux is expressed through these. Using
representation theorems for isotropic tensor functions [13] and dimensional analysis, we find the
most general entropy flux expression for these variables as
k Mg

M1 gm
Uy, = A2k
k Y 0 « pg +ﬂ pge )

(12)

where the dimensionless coefficients v, «, 5 depend on the dimensionless invariants (Hz)” /p?,
(HS)ll/p3, ¢?/(p*0) (note that the invariant Il = 0) [13].

Presently, we are only interested in the leading correction to the classical entropy flux ¢;/6.
Considering II;; and ¢; as small and of the same order, Taylor expansion to second order yields

11
U = I gy =R (13)
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where the coefficient of the first term on the right-hand side was chosen such that the classical
result is reproduced, and «y is a constant. The form (13) of the entropy flux appears as a result
in RET of 13 moments (with ag = 2/5) [15].

Interestingly, the gradient of the additional term ao% can be expanded such that it yields
higher order additions to the thermodynamic forces. Indeed, introduction of this additional
contribution in eq. (7), yields an extended form of the second law that reads
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The underlined terms on the left are equal to the underlined terms on the right, where o and
ag are arbitrary numbers, and o = 1 — ., 7 € {1,2}. The coefficients «, and «; distribute
the contributions to entropy generation between different force-flux pairs; their values will be
obtained from comparison to results from kinetic theory. For ag = 0, the underlined terms in
eq. (14) vanish, and eq. (7) is recovered.

The right-hand side of eq. (14) is the entropy generation rate, which can—again—be recog-
nized as a sum of products of the fluxes IIj; and g with generalized thermodynamic forces (in
square brackets). The corresponding phenomenological equations that guarantee positivity of
the entropy production read

g  ap [ Oqq Olno Olnp
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Here, the coefficients were chosen such that in the classical limit (i.e., when ap = 0), the NSF
equations are obtained. Since the fluxes IIy; and g appear explicitly in the forces, we refer to
relations (15) and (16) as the coupled constitutive relations (CCR) for conservation laws (1)—(3).
Conservation laws (1)—(3) along with CCR (15) and (16) constitute the CCR system.

We emphasize that only the entropy flux was changed, while the Gibbs equation, and hence
entropy, remain unchanged. With their higher order contributions to the fluxes and the equilib-
rium entropy, the resulting equations stand somewhere between the NSF equations and higher
order models such as the Burnett equations. Since the CCR system is accompanied by the
second law, we expect it to be stable while, as pointed out before, the Burnett equations are
not accompanied by a proper entropy balance, and are unstable.

With the extended entropy flux (13) and coupling force-flux relations, we find additional
linear contributions to stress and heat flux, in contrast to [32] where all additional contributions
are strictly non-linear. The linear contributions are well known in kinetic theory, and are required

to describe processes. For instance, the linear contribution %:) in (15) describes thermal stresses,

where temperature gradients can induce flow [4]. Similarly, the linear contribution aé[c‘;l in (16)
describes stress induced heat flux, as discussed in §5(b) below.

2.3 Evaluation of the phenomenological coefficients

The CCR (15) and (16) contain the coefficients ag, a1 and a9, which, in principle, can be
determined from experiments or theoretical scenarios. While the Burnett equations are unstable
in transient processes, they describe higher order effects in gases with some accuracy. Hence,
we determine the CCR coefficients from comparison with the Burnett equations.

The Burnett equations are obtained from the CE expansion in the Knudsen number, which
is proportional to the viscosity. The procedure can be easily applied to the constitutive relations
(15) and (16) as follows: Stress and heat flux are expanded in terms of the viscosity, so that

My = NHIE:P + MQHI(C? + - } a7
gk = nay + @Pqd + o
Inserting this ansatz into egs. (15) and (16), we find at first order the NSF laws
ov 5 06
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and at second order
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where w is the exponent in the expression of viscosity for power potentials, see eq. (11). Com-
parison of (19) and (20) with the Burnett constitutive relations [eqs. (4.47) and (4.48) of [2],
respectively| gives

Pr S50 S ( ) =
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where, w; and 6; are the Burnett coefficients. These relations (21) yield the unknown coefficients

as
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We note that the CCR coefficients a, a1, ao can be fitted to the Burnett coeflicients in agree-
ment with the well-known relations between Burnett coefficients, 84 = w3 and w3 + w4+ 603 =0
2, 34].

The Burnett coefficients depend upon the choice of intermolecular potential function ap-
pearing in the Boltzmann collision operator, values of these coefficients for inverse-power law
potentials can be found, for example, in Ref. [2, 35]. The values of the phenomenological coef-
ficients ay, a; and ag for the hard-sphere (HS) and Maxwell molecule (MM) gases are given in
table 1; for other power potentials, they can be computed from eqs. (21). We emphasize that

Table 1: Phenomenological coefficients for hard sphere (HS) and Maxwell molecule (MM) gases

Molecule type Pr Qag a9 o
MM 2/3 2/5 0 0
HS 0.661 0.3197 —0.2816 0.4094

we have performed the expansion (17) only to determine the coefficients ag, a1, ag, but will use
the full CCR as given in (15) and (16).

3 Wall boundary conditions

Just as the process of finding constitutive relations in the bulk, the development of wall boundary
conditions is based on the second law. Specifically, one determines the entropy generation at the
interface, and finds the boundary conditions as phenomenological laws that guarantee positivity
of the entropy generation.

The entropy production rate at the boundary X, is given by the difference between the
entropy fluxes into and out of the surface [10], i.e.,

S = (xyk - Zlfv> ng > 0. (22)

Here, ny is unit normal pointing from the boundary into the gas , ¢}’ denotes the heat flux in

the wall at the interface, and 0 denotes the temperature of the wall at the interface. Here, the
wall is assumed to be a rigid Fourier heat conductor, with the entropy flux ¢;’/6* and II}j, = 0.
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At the the interface, the total fluxes of mass, momentum and energy are continuous, due to
conservation of these quantities [10, 31, 36, 37],

vpng = vpng =0,
(poir + i) = p*'mi, (23)
(pvk + Wipv; + qe) e = (P0) + ai ) 1,

where all quantities with superscript w refer to wall properties, and the others refer to the gas
properties. To proceed, we combine entropy generation and continuity conditions by eliminating
the heat flux in the wall ¢;’, and the pressure p*, and find, after insertion of the entropy flux

(13),

qk q | Vi
Ew = |:99w +sz (Oéope -+ 9w>:| ng = 0 (24)

Here, V; = v; — v

i is the slip velocity, with Vin; = 0, and 7 = 6 — 6" is the temperature jump.
To write the entropy generation properly as sum of products of forces and fluxes, it is
necessary to decompose the stress tensor and heat flux into their components in the normal and

tangential directions as [31]

3 1 _ _ ~
IL;; = 11, <2nmj - 25ij> + pinj + pyn; + 15, and g = gnni + @, (25)

where ¢, = qgng, llyn = Hgngng, and

@i = Qi — QN
IL,; = png — Ipnn;, (26)
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such that gyny = I, xni, = ﬁkk = ﬁijnj = ﬁ”nz =0, see appendix A for more details.
Substituting egs. (25) and (26) into eq. (24), the entropy generation can be written as a sum
of two contributions,

Iy _
Y = — 00 (PVi + o) —

(Qn + ﬁmvl)
pOow

(PT + aoﬂme).

where P = p — agpll,,;,. As in LIT of the bulk, the positivity of entropy production is ensured
by phenomenological equations,

St 2

Vo Vo

Here, ¢; and ¢ are non-negative coefficients, which can be obtained either from experiments
or from kinetic theory models. We determine ¢; and ¢ from the Maxwell accommodation
model [38]. This model employs the accommodation coefficient y, which is defined such that
a fraction y of the molecules hitting the wall returns to the gas in equilibrium with the wall
properties (wall Maxwellian), whereas the remaining fraction (1 — ) is specularly reflected.
Comparison with boundary conditions from this model shows that these coefficients are related
to the velocity-slip coefficient nys and the temperature-jump coefficient npy as [31]

IL,; = (PVi+aog)  and  gn+ OV = —==(PT + aolly,b). (27)

2 x 1 2 x 2
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z 28
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The values of velocity-slip coefficient 1vg and the temperature-jump coefficient 1ty as obtained
from the linearized Boltzmann equation [39-42] are given in table 2.



Table 2: Velocity-slip coefficient 7yg and the temperature-jump coefficient 5ty for hard sphere
(HS) and Maxwell molecule (MM) gases obtained through the linearized Boltzmann equation
in Refs. [39-42]

Molecule type nvs nT)
MM 1.1366 [39] 1.1621 [41]
HS 1.1141 [40] 1.1267 [42]

Conditions (27) are the required, and thermodynamically consistent, boundary conditions
for the CCR system. The first term in the brackets of boundary condition (27); relates the
shear stress (I,;) to the tangential velocity slip (V;) while the second term describes thermal
transpiration—a flow induced by the tangential heat flux. It is evident from the boundary
condition (27); that the NSF equations, for which ay = 0, do not allow thermal transpiration
within the framework of thermodynamically consistent boundary conditions. The boundary
condition (27)y relates temperature jump (7) and viscous heating (I1,,;V;) to the normal heat
flux gy, (see [43]).

Several authors have suggested second order boundary conditions for the Navier—Stokes
equations, which are in a form, possibly with other values of coefficients, identical to (27) [44].
Our derivation suggests that in order for the boundary conditions to be compatible with the
second law of thermodynamics, the NSF equations do not suffice, while they arise quite naturally
from CCR.

4 Linear stability analysis

In this section, we analyze the stability of the CCR system ((1)—(3) along with (15) and (16))
to small perturbations.

4.1 Linear dimensionless equations

For linear stability analysis, the CCR system is linearized by introducing small perturbations in
the field variables from their values in an equilibrium rest state. We write

p=rpo(1+p), vi=+000;, 0=~00(1+0), IL; = pobollyj, q¢i = pofor/ 0o i, (29)

where pg and 0y are the values of p and 6 in the equilibrium while the remaining variables
vanish in the equilibrium rest state; hats denote the dimensionless perturbations in the field
variables from their values in the equilibrium rest state; and /@y is the scale for making the
velocity dimensionless. These dimensionless perturbations are assumed to be much smaller
than unity so that the linear analysis remains valid. Consequently, the pressure is linearized as
p = po(l+p) with pg = pobp and p ~ p+ g, Furthermore, a relevant length scale L is introduced
so that the dimensionless space variable is #; = z;/L and the dimensionless time is t= tv/0o /L.
Also, the external force is assumed to be small (of the order of small perturbations) in a linear
analysis, and the dimensionless external force is given by F,=F,L /6o. Substituting the values
of field variables from egs. (29) in the CCR system, introducing the dimensionless space and
time variables, and retaining only the linear terms in the perturbation variables, one obtains

op  Ovp
ot om0 (30)
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with
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In egs. (30)—(33), the hats are dropped for better readability, and
Kn = —12 (34)

VoL

is the Knudsen number with o being the viscosity of the gas in equilibrium. Thus, all quantities
in egs. (30)—(33) and henceforth are dimensionless unless otherwise mentioned.

4.2 Plane harmonic waves

Now we consider a one-dimensional process (in the z-direction) without any external forces (i.e.,
F; = 0) and assume a plane wave solution of the form

¥ = tpexp [i(wt — k)] (35)

for eqs. (30)(33), where ¥ = {p,vs,0, 0,2} ', zp is a vector containing the complex ampli-
tudes of the respective waves, w is the (dimensionless) frequency and k is the (dimensionless)
wavenumber. Substitution of the plane wave solution (35) into egs. (30)—(33) gives a system of
algebraic equations A = 0, where

iw -k 0 0 0
—ik  iw —ik —ik 0
A=10 —ik 3 iw 0 —ik
0 —3Knik 0 1 —4Kn apik
0 0 —38nyp _SEngik 1

For nontrivial solutions, the determinant of matrix .4 must vanish, i.e., det (A) = 0. This leads
to the dispersion relation, which is the relation between w and k:

2
<3 + 5Kna(2)k2> W —1 <2Kn + 5Kn> k2w?

2 Pr 2 Pr
5 2 Kn? 5Kn
—- 11 22 (24 2\ 1.2 2 i 4: )
2[ +3Pr( a0+5a0)k}k;w+2Prnk 0 (36)

For temporal stability, a disturbance is considered in space; consequently, the wavenumber k
is assumed to be real while the frequency w can be complex. From the plane wave solution (35),
it is clear that temporal stability requires the imaginary part of the frequency to be nonnegative,
i.e., Im(w) > 0, for all wavenumbers. In other words, if Im(w) < 0, then a small disturbance in
space will blow up in time.

Figure 1 illustrates the stability diagram for the CCR system, NSF equations and Burnett
equations shown by blue, red and green colors, respectively. The results for the NSF equations
and Burnett equations are included for comparison. Assuming Maxwell molecules, we have
Pr = 2/3 and a9 = 2/5; the Knudsen number is set to Kn =1, that is the mean free path
is used as relevant length scale. The figure exhibits w(k) = Re(w) + 1Im(w)—obtained from
the dispersion relations for the CCR system, NSF equations and Burnett equations—in the
complex plane with k£ as parameter. The gray region in the figure is the region, in which the
stability conditions are not fulfilled, hence it depicts the unstable region whereas the white region
represents the stable one.

It is evident from figure 1 that the NSF equations (red) as well as the CCR system (blue) are
linearly stable in time for all wavenumbers since the roots of their dispersion relations always
have nonnegative imaginary parts; on the other hand, the Burnett equations (green) are unstable
in time, with negative roots for large wavenumbers.
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Figure 1: Temporal stability diagram for the CCR system (blue), NSF equations (red) and
Burnett equations (green). The roots w of the dispersion relations plotted in the complex plane
for different values of k. The gray and white colors depict the unstable and stable regions,
respectively.

5 Classical flow problems

5.1 Knudsen minimum

The Knudsen minimum is observed in a force-driven Poiseuille flow of rarefied gases, in which,
for given force, the mass flow rate of a gas first decreases with the Knudsen number, attains a
minimum value around a critical Knudsen number and then increases with the Knudsen number.
We shall investigate this problem through the CCR system.

Let us consider the steady state (9(-)/9t = 0) of a gas confined between two isothermal, fully
diffusive walls of a channel. Let the walls be located at (dimensionless positions) y = F1/2 and
be kept at a (dimensionless) temperature % = 1. The flow is assumed to be fully developed
and driven by a uniform (dimensionless) external force F' in the positive z-direction parallel to
the walls; all field variables are independent of x; and the velocity component in the y-direction
is zero, i.e., v, = 0. The problem can be described through the (linear-dimensionless) CCR
system (egs. (30)—(33)). For the problem under consideration, the mass balance equation (30)
is identically satisfied and the rest of the equations simplify to

oy, dp 00 Ol gy
oy 8y+8y+ oy =0 dy =0 (37)
with
Ovg 8q$) 4 gy
I, = -Kn| ——4+ag— |, II,, = —=Knag—==,
Y < ay 0y w3 oy (38)
_ _5Kn 0l _ _5Kn /o9 Ol
e = 2Pr 0 dy &= "9, oy oy )

The boundary conditions (27) at the walls (i.e., at ¥y = F1/2) in the linear-dimensionless form
reduce to

+Il,, = —q1 (vx + ag qx) and +qy = —2 a9 Ily,. (39)
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Figure 2: Mass flow rate of a hard-sphere gas in a force-driven Poiseuille flow plotted over the
Knudsen number for F' = 1. The accommodation coefficient is y = 1.

Solving equations (37); and (38); 3 with boundary conditions (39); yields a parabolic velocity
profile,

1/2 1 11 1 _Kn
F ++5a2). 40
\f/l/Q V2 (6Kn <1 Pr ° (40)
Here, the additional factor of 1/1/2 in the mass flow rate is included in order to compare
the present results with those obtained from the linearized Boltzmann equation (LBE) in [5]
where the authors scale velocity by v/260. As the walls of the channel are fully diffusive, the

accommodation coefficient y is unity, and hence from eq. (28)1, 1 = (\/2/7)/nvs. The mass flow

rate from the NSF equations with slip boundary conditions is obtained by setting ag = 0, which
gives ﬁF (é Kln + 1 ) while for NSF with no-slip boundary conditions one finds D f KnF

Figure 2 shows the mass flow rate of a hard-sphere gas plotted over the Knudsen number
Kn = 44v/2Kn/5 for F = 1, as obtained from the CCR system (blue solid line), from the NSF
equations with (red dashed line) and without (magenta solid line) slip boundary conditions,
and from the LBE (symbols). Again, the Knudsen number Kn is multiplied with a factor of
44/2/5 in order to compare the results with those from [5]. The parameters Pr and nvs for
hard-spheres are taken from tables 1 and 2, respectively. It is clear from the figure that the
CCR system predicts the Knudsen minimum and closely follow the mass flow rate profile from
the LBE up to Kn ~ 1. On the other hand, the NSF equations with or without slip do not
predict the Knudsen minimum at all; in particular, the mass flow rate from the NSF equations
with no-slip boundary conditions is not even close to that from the LBE equations. The mass
flow rate from the CCR system (eq. (40)) possesses the term 5Kn ag, which dominates for large
Knudsen numbers resulting into an increasing mass flow rate proﬁle for large Knudsen numbers.
However, such a term is not present in the expressions of mass flow rates obtained with the NSF
equations with or without slip; consequently, the mass flow rate profiles from the NSF equations
always decay with the Knudsen number.

5.2 Lid-driven cavity flow

The lid-driven cavity is a well-known test problem in rarefied gas dynamics, in which a gas—
under no external force—is confined to a square enclosure of (dimensionless) length 1. The
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Figure 3: Dimensionless velocity profiles: (a) z-component of the velocity (v,/vq) along the
vertical centerline of the cavity, and (b) y-component of the velocity (v, /viiq) along the horizontal
centerline of the cavity. Numerical solutions from the the CCR system (blue solid lines) and
from the NSF equations (red dashed lines) for Kn = 0.1/y/2 are compared to the DSMC data

(symbols) from [8].

boundaries at * = 0, x = 1 and y = 0 are stationary while the upper boundary at y = 1 is
moving in the z-direction with a velocity vj;q. The boundaries are kept at a constant temperature,
which is equal to the initial temperature of the gas inside the cavity so that the dimensionless
temperature of the walls 6 = 1. The flow in the cavity is assumed to be in steady state and
independent of the z-direction, i.e., 9(-)/0t = 0 and 0(-)/0z = 0. The problem is solved through
the CCR system ((1)—(3) along with (15) and (16) in dimensionless form) numerically using a
finite difference scheme whose details can be found in [9)].

Figure 3 shows the vertical and horizontal components of the velocity along the horizontal
and vertical centerlines of the cavity, respectively, computed through the CCR system and the
NSF equations for Kn = 0.1/4/2 and wv;q = 0.21 (50m/s in dimensional units). The results
are compared to DSMC simulations for hard spheres, hence we chose the phenomenological
coefficients for hard spheres from table 1. The velocity profiles from the CCR, system as well as
from the NSF equations are in good agreement with the DSMC simulations [8].

It is well-known that the classical NSF laws cannot describe heat transfer phenomena in a
lid-driven cavity, see e.g., [9, 45, 46] and references therein. Therefore, either extended models,
such as Grad-type moment equations or the R13 equations [2, 17], or other advanced constitutive
laws ought to be used for the closure in order to describe the heat transfer characteristics.

We study in particular the temperature field and heat flux induced in the lid-driven cavity
and compare the results from the CCR system to those from DSMC presented in [8]. Figure 4
illustrates the heat flux lines plotted over the temperature contours, and compares the predic-
tions of (from left to right) the CCR system, DSMC and the NSF equations. The NSF equations
predict that the heat flows from hot (top-right corner) to cold (top-left corner) in an orthogonal
direction to the temperature contours. However, both the CCR system and DSMC predict heat
flux from cold region to hot region, which is non-Fourier effect.

The non-Fourier heat flux can easily be understood from the linear terms itself, which domi-
nate the nonlinear terms. From the (linearized) momentum balance equation (31) (ignoring the
time derivative and external force terms), the divergence of the stress is given by

olly,  Op

= — . 41
Substitution of this in the (linearized) constitutive relation for the heat flux (33)2 yields
5Knod 5Kn 0
¢ ~Qi=—55- 2 0L (42)

2Prdzx; 2Pr Ox;

The first term on the right-hand side of eq. (42) is the Fourier’s contribution to the heat flux while
the second term is the non-Fourier contribution to the heat flux due to the pressure gradient,
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Figure 4: Heat flux lines superimposed over temperature contours for the lid-driven cavity
problem at Kn = 0.1/v/2 obtained through the CCR system (left) and the NSF equations
(right) are compared to DSMC data (middle) given in [8].

which is responsible for heat transfer from the cold region to the hot one. Figure 5 displays heat
flux lines (black) and @; lines (red) superimposed on the contours of (0 — agp) for the CCR
system (left) and DSMC (right). It is evident from the figure that the heat flux ¢; from (16) is
estimated well with @; (eq. (42)), which is orthogonal to (6 — agp) contour lines. It can also be
seen by comparing figures 4 and 5 that the heat flux lines in DSMC simulations are governed by
the (0 — agp) gradients, not by the temperature alone. Near the bottom of the cavity, the heat
flux lines (black) given by DSMC differ from those given by @; due to statistical noise inherent
to the DSMC method.
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Figure 5: Heat flux lines (black) and @; lines (red) superimposed over temperature contours
for the lid-driven cavity problem at Kn = 0.1/4/2 obtained through the CCR system (left) and
DSMC data (right) from [8].

6 Conclusions

Combining ideas of different approaches to Irreversible Thermodynamics, in particular LIT, RT
and RET, we derived an improved set of constitutive relations for stress tensor and heat flux—the
Coupled Constitutive Relations (CCR). The model describes processes in mildly rarefied gases
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in sufficient approximation, and reproduces important rarefaction effects, such as the Knudsen
minimum, and non-Fourier heat transfer, which cannot be described by classical hydrodynamics
(NSF).

By construction, the resulting transport equations are accompanied by a proper entropy
inequality with non-negative entropy generation for all processes and are linearly stable. This is
a clear distinction to other models for rarefied gases, such as the Burnett equations, which are
unstable due to lack of a proper entropy, or Grad-type moment equations, which are accompanied
by proper entropy inequalities, and are stable, only in the linear case [15].

Thermodynamically consistent boundary conditions for the CCR system have been developed
as well, which describe velocity slip, temperature jump and transpiration flow at the boundaries.

The CCR add several higher order terms to the NSF system, in bulk and at the boundary.
The CCR system is accompanied by an entropy inequality, in which the entropy remains the
equilibrium entropy as integrated from the equilibrium Gibbs equation, but entropy flux and
entropy generation exhibit higher order correction terms. The model gives a good description of
some important rarefaction effects, but does not provide as fine resolution as the full Boltzmann
equation, or higher order moment equations (e.g., R13 and R26 [17, 21]). In particular, Knudsen
layers are not resolved, and only appear indirectly in the corrected jump and slip coefficients.

The development of macroscopic transport equations for rarefied gases at larger orders in
the Knudsen number with a full formulation of the second law of thermodynamics is an im-
portant project within the field of non-equilibrium thermodynamics. Often one will accept an
approximation of the second law, if the system of equations provides sufficient accuracy for the
description of processes. For instance, the regularized 13-moment (R13) equations provide good
accuracy, but have a proven second law only in the linearized case. While this guarantees linear
stability, little can be said about the non-linear behavior. On the other hand, cases where the
full second law—Iinear and non-linear—is enforced, are either not amenable to analytic closure
[23], or are not sufficiently accurate [47].

In steady state, the linearized CCR, system reduce to the linearized Grad’s 13-moment equa-
tions, which have been studied extensively in the literature. In particular, Green’s functions
solutions were obtained for the steady state linearized Grad equations by Lockerby and Col-
lyer [48]. The numerical framework based upon these fundamental solutions can readily be
implemented for the linearized CCR system allowing for three-dimensional steady computation
at remarkably low computational cost. The appropriate numerical recipes for the nonlinear
CCR system would be challenging—especially due to the non-local coupling of stress and heat
flux—which will be the subject of future research.

The successful development of thermodynamically consistent transport equations for rarefied
gases at higher orders will only be possible by using the best of several approaches to irreversible
thermodynamics, and new ideas. We hope that the development of the CCR system based on
ideas of LIT, RT and RET will be a useful step towards this end. We also envisage that these and
similar ideas will prove useful for further development of recent moment models for monatomic
gas mixtures [49, 50] and granular gases [51].

Acknowledgment:This work has been financially supported in the UK by EPSRC grant
EP/N016602/1. ASR gratefully acknowledges the funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skltodowska Curie grant agreement
no. 713548. VKG gratefully acknowledges the financial support through the Commonwealth
Rutherford Fellowship. HS gratefully acknowledges support through an NSERC Discovery grant.

A Decomposition of a vector and a tensor

A vector a; and a symmetric traceless tensor A;; can be decomposed into their components in
the direction of a given normal n and in the directions perpendicular to it (tangential directions)
15



as follows. The vector a; is decomposed as
a; = anpn; + a;,

where a,n; with a,, = agny is the normal component of a; while a; = a; — a,n; is the tangential
component of a;. By definition, a; is such that a;n; = 0.
The symmetric traceless tensor A;; is decomposed as [31]

Aij = gA,m T (i1 + Am-nj + Anjni + Aij, (43)
where Einstein summation never applies to the indices “n” and A,, = Agmnin;. The first
term in the summation of the above decomposition is the component of the tensor A;; in the
direction of normal; the second and third terms in the summation of the above decomposition
are the normal-tangential components of A;;; the fourth term in the summation of the above
decomposition denotes the tangential-tangential component of A;;. By definition, Appng, = 0
and /Ljn,- = /L-jnj = 0. Multiplication of eq. (43) with n; yields

Api = Ajjnj — Appng, (44)

and eq. (43) itself gives

- Am-nj - 1471]%Z (45)
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